Simatic 57 to Logix5000
Application Conversion Guide

Application Solution

Rockwell
ALLEN-BRADLEY . ROCKWELL SOFTWARE Automation

Important User Information

Solid state equipment has operational characteristics differing from those of electromechanical equipment. Safety Guidelines for the Appli-
cation, Installation and Maintenance of Solid State Controls (publication SGI-1.1 available from your local Rockwell Automation sales office
or online at http://literature.rockwellautomation.com) describes some important differences between solid state equipment and hard-wired

electromechanical devices. Because of this difference, and also because of the wide variety of uses for solid state equipment, all persons re-
sponsible for applying this equipment must satisfy themselves that each intended application of this equipment is acceptable.

In no event will Rockwell Automation, Inc. be responsible or liable for inditect or consequential damages resulting from the use or application
of this equipment.

The examples and diagrams in this manual are included solely for illustrative purposes. Because of the many variables and requirements as-
sociated with any particular installation, Rockwell Automation, Inc. cannot assume responsibility or liability for actual use based on the ex-
amples and diagrams.

No patent liability is assumed by Rockwell Automation, Inc. with respect to use of information, circuits, equipment, or software described in
this manual.

Reproduction of the contents of this manual, in whole or in part, without written permission of Rockwell Automation, Inc., is prohibited.

Throughout this manual, when necessary, we use notes to make you aware of safety considerations.

Identifies information about practices or circumstances that can cause an explosion in a
hazardous environment, which may lead to personal injury or death, property damage, or
economic loss.

Identifies information that is critical for successful application and understanding of the product.

Identifies information about practices or circumstances that can lead to personal injury or death,
property damage, or economic loss. Attentions help you identify a hazard, avoid a hazard, and
recognize the consequence

Labels may be on or inside the equipment, for example, a drive or motor, to alert people that
dangerous voltage may be present.

Labels may be on or inside the equipment, for example, a drive or motor, to alert people that
surfaces may reach dangerous temperatures.

salelly

Allen-Bradley, Rockwell Automation, and TechConnect are trademarks of Rockwell Automation, Inc.

Trademarks not belonging to Rockwell Automation are property of their respective companies.

http://literature.rockwellautomation.com

Table of Contents

Preface

Hardware Conversion

Logix Features that May Not be
Familiar to S7 Users

Publication LOGIX-AP008B-EN-P - June 2008

Purpose. ... o 7
Conversion versus Translation 7
Terminology 8
Additional Resources. ... 8
PLC Logic Conversion Services Provided by Rockwell Automation .. 9
Service Features i 9
One-stop PLC Program Conversion Setvices 9
Service Benefits i 10
Services Offered. o i i i 10
Basic Conversion Package............ 10
Conversion Plus Initial Clean-up Package 10
Additional Optionst 11
Additional Program Conversions Available.................. 11

Chapter 1
Introduction 13
S7Controllers.o 13
T/O Systems . .o oo vttt 14
STLocal I/O oo 14
Selection and Configuration of S71/O Components 14
Logix Local I/O. ... oo 16
Selection and Configuration of Logix I/O Components 18
S7TRemote I/O . oo 20
Configuration of S7 Profibus DP Remote I/O............... 21
Logix Distributed I/O. oo 22
Configuration of Logix Distributed I/O 22
Networks 25
Networks in 87 ... oo 25
Networks in Logix.oovviii i 27
Conversionof HMIo i 31
Conversion of Systems Containing Distributed Controllers 32
Hardware and Software Implementation 32
Connecting Siemens and Rockwell Automation Devices 34
Controllerst 34
Distributed Devices. 34

Chapter 2
Introduction 35
S7 Organization Blocks Compared to Logix Tasks 36
Organization Blocks in 87.......... o o i oL 36
Tasks in LogIxo 41
Task MONItorot 46
Tags Not Addresses. . ..ot 47
Data Areasin S7... ... i 47
Datain Logix 50
I/O and Alias Tags.o oottt ittt 51
Programming Languages o i 53
3

Table of Contents

Conversion of System Software
and Standard Functions

Logix Ladder Diagram. o .. 54
Logix Structured Text i 54
Logix Function Block Diagram. 55
Logix Sequential Function Chart 55
Conversion of STEP 7 Code to Logix, 55
Arrays not POINtErS . ..o v et 56
Add-On InStructionso v vttt 57
Add-On Instruction Summary 57
Backing Tagst 58
The Common Industrial Protocol (CIP)........................ 58
Viewing the Network. o oo i 59
Data Exchange between Controllers. 60
Send / Receive in STEP 7. . . v oot e et e 60
Produced / Consumed Tags in Logix.ooo.. 60
User-Defined Data Types, 61
Asynchronous I/O Updating, 62
The DINT Data Type ..ottt 62
Phase Managerttt 63
Phase Managementin STEP 7 63
PhaseManagerin Logix o i 63
Coordinated System Time (CST). ...t 65
Timestamped Inputs i 65
Scheduled Outputs. o i 65
No Temporary Variableso ... 66
No Accumulators or Special Registers needed. 66
Chapter 3
Introduction 67
Logix System Functions.o i, 68
GOy et 68
Date and Time Setting and Reading 69
Read System Time oottt e 69
Handling of Interrupts. i 70
Brrors oo 70
Status — Controller i 71
Status—Module. 71
Status — for OBsand Tasks L. 72
TIMEIS. ot 72
Conversion Routines o i i 73
String Handling Routines. o o i, 73
Examples of System Function Calls 74
Settingthe Clock o i 74
Disabling Interrupts. 76
Read System Time oooiiii e 78
GetFaults. ... o 79
Module Information o i 80

Publication LOGIX-APO08B-EN-P - June 2008

Table of Contents

Conversion of Typical Program

Structures

Common Mistakes when
Converting to Logix

Publication LOGIX-APO08B-EN-P - June 2008

GetScan Time . . oot i e e 81
Chapter 4
Introductiono e 83
Conversion Code Examples oot 83
Ladder Logic Translation oo .. 83
Jumps and Decision Making 90
ALTAYS oottt 94
User DataTypes ... 99
Pointers and Arrays o i 102
State Machine. i i i 103
STEP 7 State Machine.t 104
SHIINGS . . oo 108
STEP 7 Temporary Variables 110
Functionst e 110
Block Copy, COPand CPS.........., 114
Mathematical Expressions., 116
Other Topics Related to Programming. 120
Scopeof Variables.o oL 120
OBs, Tasks, and Scheduling 120
A Larger Example - Control Module 121
Componentsof the CM. oo, 121
User Data Type Valveo oL 122
The Add-On Instruction., 123
Add-On Instruction Local Data 124
Call-up ..o 127
Chapter 5
Introductiont e 129
Not Selecting Appropriate Hardware 129
Underestimating Impact of Task Scheduling 130
Performing Translation Instead of Conversion 130
Not Using the Most Appropriate Logix Languages.............. 130
Implementation of Incorrect Data Types — DINT versus INT 131
Add DINTS .ot e 131
Add INTS o 131
Timing Resultso o i 131
User Code Emulating Existing Instructions. 132
User Code. . vvvnii i i e e e e e 132
COP InStruction .. vvu vttt e ettt e e eeeee e 132
Incorrect Usage of COP, MOV, and CPS 133
Incorrect Usage of CPT. ... i 133
Not Handling Strings in Optimal Way 133
Extensive Usage of Jumps.......... ... 133
Not Using Aliased Tags, 133
5

Table of Contents

S7 to Logix Glossary

$7 300 and S7 400 Parts and
RA Equivalents

Siemens HMI Cross
Reference Tahle

Chapter 6

Introduction. i 135
Hardware Terminology o .. 135
Software Terminology o i 136
Appendix A

Introduction 139
Compact S7300 CPUs. 140
Standard S7300 CPUs........ ... o i 140
Technology S7T300 CPUs ... 141
Fail-Safe S7T300 CPUs 142
S7 300 Digital Input Modules i 142
S7 300 Digital Output Modules. 143
S7 300 Relay Output Modules., 144
S7 300 Digital Combo Modules 144
S7 300 Analog Input Modules., 144
S7 300 Analog Output Modules 145
S7 300 Analog Combo Modules 146
S7 400 Standard Controllers 146
Redundant and Fail Safe Controllers. 147
Digital Input Modules o 147
Digital Output Modules. 147
Analog Input Modules. o 148
Analog Output Modules o ... 148
Appendix B

SIMATIC Micro Panels and Rockwell Automation Equivalents . .. 149
SIMATIC Panels - 7x Series and Rockwell Automation

Equivalents. 151
SIMATIC Panels - 17x Series and Rockwell Automation

Equivalents 152
SIMATIC Panels - 27x Series and Rockwell Automation

Equivalents 155
SIMATIC Multi Panels - 27x Series and Rockwell Automation
Equivalents 157
SIMATIC Multi Panels - 37x Series and Rockwell Automation
Equivalents 159

Publication LOGIX-APO08B-EN-P - June 2008

Preface

Purpose

Conversion versus
Translation

Publication LOGIX-AP008B-EN-P - June 2008

This user manual provides guidance for users and engineers who have used
control systems based on one of these two platforms:

e Siemens S7 Controller

* Rockwell Automation Logix Programmable Automation Controller

(PAC)
And in addition:

* have a desire or a need to take advantage of the PAC features, or are in
the early stages of migrating a S7 to Logix.

* have specific STEP 7 program code that they wish to convert to
effective and efficient RSLogix 5000 code.

Use this manual to help you adopt good practices and to avoid common
mistakes when converting the project to Logix.

The theme of conversion versus translation is one that is repeated in this
application conversion guide. Simple translation is focusing only on the line of
code and finding an equivalent in the Logix languages. To convert an
application optimally, you have to do more than just translate. For instance,
you may benefit from choosing a different programming language, utilizing
different programming techniques, and designing a different scheduling
scheme to solve the same task. So, conversion is performed in a context of a
higher level design and knowledge of the strengths of the Logix system.

If you have application code to convert, you will need to understand your
STEP 7 program before you start conversion — either by having been involved
yourself in its development, or by reading documentation of the program and
of the process that it controls. If the program or the process is unfamiliar or
poorly documented, proper conversion will be difficult — it will be mere
translation and is less likely to succeed. For example, in Logix, there is a global
name space, whereas in the Siemens environment there are data blocks that
can be loaded/unloaded by application code. Appreciation of this helps you
design a strategy for conversion.

In some cases, if the documentation of both the process and program is poor,
it may be more efficient in terms of the overall project duration/cost to draw
up a new specification and begin your Logix program with minimal time spent
on translation from the old program.

Preface

Terminology

Additional Resources

STEP 7 is the programming software environment for Siemens SIMATIC S7
controllers. RSLogix 5000 softwate is used with Rockwell Automation Logix
programmable automation controllers. We refer to Logix as a programmable
automation controller because it does so much more than a traditional
general-purpose PLC. It provides an excellent control platform for
multi-discipline control, a common namespace, Coordinated System Time for
truly scalable multi-CPU architectures, user-defined data types, and full
NetLinx connectivity.

The term “Logix” is used to refer to any of the ControlLogix, CompactLogix,
GuardLogix, FlexLogix, DriveLogix or SoftLogix controllers, or the

RSLogix 5000 programming environment where it is clear from the context
which is being referred to.

Every section of this application conversion guide references other Rockwell
Automation user manuals, selection guides, and documents in which more
information can be found.

Publication Number Publication Title

1756-SG001 ControlLogix Controllers Selection Guide

1769-SG001 1769 CompactLogix Controllers Selection Guide

1768-UMO001 1768 CompactLogix Controllers User Manual

1769-SG002 Compact 1/0 Selection Guide

1756-RM094 Logix5000 Controllers Design Considerations Programming
Manual

1756-PM001 Logix5000 Controllers Common Procedures Programming
Manual

1756-RM003 Logix5000 Controllers General Instructions Reference Manual

1734-SG001 POINT 1/0 Selection Guide

1738-SG001 ArmorPoint 1/0 Selection Guide

1792-SG001 ArmorBlock MaXum 1/0 and ArmorBlock I/0 Selection Guide

1794-SG002 FLEX /0 and FLEX Ex Selection Guide

NETS-SG0O01 NetLinx Selection Guide

VIEW-SGO001 Visualization Platforms Selection Guide

|A-RM001 Integrated Architecture: Foundations of Modular
Programming

6873-SG004 Encompass Program Product Directory

1756-PM010 Logix5000 Controllers Add-On Instructions Programming
Manual

1756-RM087 Logix5000 Controllers Execution Time and Memory Use
Reference Manual

IASIMP-RM001 IA Recommended Literature Reference Manual

Publication LOGIX-APO08B-EN-P - June 2008

Preface

PLC Logic Conversion
Services Provided by
Rockwell Automation

Publication LOGIX-APO08B-EN-P - June 2008

Rockwell Automation provides additional services for PLC logic conversion.

* Service Features

* One-stop PLC Program Conversion Services
* Service Benefits

* Services Offered

* Basic Conversion Package

* Conversion Plus Initial Clean-up Package

¢ Additional Program Conversions Available

Service Features

Program Conversion Services will convert your legacy Allen-Bradley brand
PLC or third-party programmable controller program to run on a Logix
programmable automation control system, ot the SLC 500/MicroLogix or
PLC-5 programmable controllers.

Legacy products are often expensive to support and are difficult to repair,
which can increase downtime and decrease production. For this reason,
Rockwell Automation Customer Support now offers Program Conversion
Services. These services are designed to reduce the cost and the time it takes to
migrate from a legacy PLC to one of our current PAC or PLC-control
platform families.

One-stop PLC Program Conversion Services

Migration to a current Allen-Bradley control platform from a legacy product
will improve your manufacturing process, system reliability and flexibility, give
you more access to application processing power, and reduce equipment repair
costs and spares inventory. With Program Conversion Services from Rockwell
Automation Customer Support, your existing programmable controller
program will be expertly and quickly converted to the new controller family.
Rockwell Automation customer support engineers can help in the migration of
legacy Allen-Bradley equipment or convert your PLC systems to Rockwell
Automation products while minimizing downtime and maximizing operational
success.

Preface

10

Service Benefits

Specialists for each of the product platforms will be involved during the
program conversion process. There are no hard to find anomalies in the logic
caused by typing errors. In most cases, the entire data table is reproduced and
no data is lost, as well as the original documentation is preserved, no re-typing
of comments and symbols. Original Allen-Bradley brand programs can be in
6200, APS, or Al series format. New programs will be in the appropriate
RSLogix format.

Services Offered

Two program-conversion packages are available as well as project specific
custom packages done on a case-by-case basis.

Basic Conversion Package

* The original programmable controller program will be converted to the
appropriate ControlLogix, CompactlLogix, PLC-5, or
SLC 500/MicroLogix format.

* The package provides an error listing generated during the conversion
that includes instructions that are not directly convertible and any
addresses that may not have been converted, which could include

pointers and indirect addressing,

* The program and error listing would be returned to the customer for
manual debugging and correction.

Conversion Plus Initial Clean-up Package

* The original programmable controller program will be converted to the
appropriate ControlLogix, PLC-5, or SLC 500/MicrolLogix format.

* We will correct and convert any instruction and/or addressing errors to
the new processor family.

* The completed program will then be returned to the customer for final
startup and debugging,

Publication LOGIX-APO08B-EN-P - June 2008

Preface

Publication LOGIX-APO08B-EN-P - June 2008

Additional Options

Additional options to either of the packages include the following:

» Application-level telephone support during the start-up and debugging
phase of the project.

* Consultation on system re-engineering, operator interface, architecture
and communication strategies, to take full advantage of the new
platform’s control capabilities that are not part of a code translation
effort, training, and onsite startup is available as an added value from
you local Global Sales and Solutions (GSS) office.

* Complete turn-key migration or upgrades are available from your local
GSS/Engineered Systems Office.

Additional Program Conversions Available

* PLC-2 format to ControlLogix, CompactLogix, PLC-5,
SLC500/MicroLogix format

* PLC-3 format to ControlLogix, CompactLogix, or PLC-5 format

* PLC-5/250 format to ControlLogix or CompactLogix format

* Modicon — Quantum, 984, 584, 380, 381, 480, 485, 780, 785 to
ControlLogix or CompactlLogix format

* Siemens — S-5, S-7 to ControlLogix or CompactlLogix format

* TI - 520, 520C, 525, 530, 530C, 535, 560, 560/565, 565, 560/560T,
5607T, 545, 555, 575 to ControlLogix or CompactLogix format

* GE Series 6 to ControlLogix or CompactLogix format

Program conversions of other third-party programmable controllers to
Allen-Bradley controller programs are also available. Contact technical support
for details.

To schedule a conversion project, or learn more about the Program
Conversion Services, contact your local Rockwell Automation sales office or
authorized distributor: email us at raprogramconversion@ta.rockwell.com, or
visit http://support.rockwellautomation.com/ and view KnowledgeBase
Document G19154.

IMPORTANT Use consultation services for re-engineering, typically to

expand the system functionality and not to change out
hardware due to obsolete or related reasons. SLC to Logix
format and PLC-5 to Logix format conversions and PCE
comment generation are built into RSLogix 5000 software.

1"

http://support.rockwellautomation.com/
raprogramconversion@ra.rockwell.com
raprogramconversion@ra.rockwell.com

Preface

Notes:

12 Publication LOGIX-APO08B-EN-P - June 2008

Chapter 1

Hardware Conversion

Introduction The objective of this chapter is to provide guidance to a user or engineer who
needs to determine the correct Logix hardware as a replacement for the
existing S7 equipment.

The chapter describes how to select controllers, local 1/O, remote 1/O,
networks, and HMI, includes a section on distributed controller architecture,
and provides HW conversion examples of the most often used S7 modules.
Topic Page
S7 Controllers 13
I/0 Systems 14
Networks 25
Conversion of HMI 31
Conversion of Systems Containing Distributed Controllers 32
Connecting Siemens and Rockwell Automation Devices 34
S7 Controllers This table lists a relevant sample selection of curtent Siemens S7 controllers,

which are used to cover a wide range of applications.

Sample Selection of Current Siemens S7 Controllers

Controller Part Number Logix Equivalent
313C 6ES7 313-5BF03-0AB0 L23 Serial

314C-DP 6ES7 314-6CG03-0AB0 | L23 EtherNet/IP, L31
315-2 DP 6ES7 315-2AG10-0ABO | L32E, L32C
317-2DP 6ES7 317-6TJ10-0ABO L35CR, L35E
317T-2 DP 6ES7 317-6TJ10-0ABO L43, L45

319-3 PN/DP 6ES7 318-3EL0O0-0ABO 145, 161

414-2 BES7 414-2XK05-0AB0 | L61, L62

414-3 6ES7 414-3XM05-0AB0 | L62, L63, L64, L65
414-3 PN/DP 6ES7 414-3EM05-0AB0

Publication LOGIX-AP008B-EN-P - June 2008

13

Chapter 1 Hardware Conversion

Sample Selection of Current Siemens S7 Controllers

315F-2 PN/DP (Safety) 6ES7 315-2FH13-0AB0 GuardLogix L61S, L62S,
BES7 317-2FK13-0aB0 | L63S

414-H (Redundant) 6ES7 414-4HM14-0AB0 | L671-L65 with SRM

417-H BES7 417-4HT14-0ABO

PCS7 — Uses 417-4 controller L3x, L4x, L6x +
FactoryTalk View,
FactoryTalk Batch
software

A guide to the suitability of some of the most commonly used S7 controllers
follows:

e S7 315-2DP — Small to medium-sized machines.

* §7 317-2DP — Medium to medium - large sized machines, small to
medium process control applications.

* §7 414-2 — Demanding machine control, process control applications.

* S7 414-3 — Demanding machine control, large process control
applications.

The complete range of S7 controllers is listed in Appendix A.

| /0 SVS'tems These sections desctibe Logix I1/O systems to replace existing S7 equipment.

S7 Local 1/0

There is a wide range of $7-300 and S7-400 I/ O modules. S7-300 modules are
mounted to standard DIN rail and connected to adjacent cards by using
U-connectors, which are supplied with the modules. S7-400 modules are
mounted to the S7-400 rack.

Selection and Configuration of S7 1/0 Components

The screen shots that follow are from the STEP 7 Hardware Configuration
program, a separate program in the STEP 7 application collection. In
RSLogix 5000 software, this functionality is fully integrated as you will see later
in this user manual.

14 Publication LOGIX-APO08B-EN-P - June 2008

Hardware Conversion

Chapter 1

STEP 7 Hardware Configuration Program

i HW Config - [SIMATIC 400 Station (Configuration) -- GSKNOO2__057_]

B Stetion Edt Insest PLC View Oplions Window Help

D (28 (8] & Ble| dela| [2 w2
~
Jisi O URT @aresio| [@eresto| [@mresto| (@ooreste] (@oaeesid] [gosiresic W:‘; — =
+ WY PROFIBUS DP
[opnora] | | [oevonaa] | | [urnonea) | [or-nons] [op-tiore] [op-orsa] £ LROFIBUS PA
[l SIMATIC 300
+ [l SIMATIC 400
J + [SIMATIC PC Based Conlrol 300/400
¥ ¥ |4 B SMATICFC Stahon
@Az Feroza| [@OR0 [Fmmoan| [goaros]| [@oomos| [ge |* S FRORNETD
(D | @D| [0 my| @D| IMD| @

1|

DIExDC 244 Intermup
DIBxDC 284 [ntermup
DIExUC 1207230
DITExUC 1204230

] | IREFLY

DI324DC 24

DI324UC 1200
-3 DO-400

- SIMATIC PC Bazed Control 20044
-2 SIMATIC PC Station
#-{Z7 PROFINET IO

BESY 421-1BLO0-0A40
Dhigital input module D132, 24 YDC,

qrauping 32

Publication LOGIX-APO08B-EN-P - June 2008

DI1ExUC 2450 interrupt

e

== 0 uR1
Shot Moxh e | Oircden rrambes Finware | MPl addiess | | adders | O addess | Comment
G ac__S?:urmAm-m =~
BBl EELE GES7 414 RUO40ABD VA1 H
w2 28 FISr
AT MEEAN" [is Ll
IF1
5 CF 4430 [BGE7 MFERT1-020 [VZ5 [8147
B
7
g
3
i
11
12
iE]
T
15
3)
Press F1 bo get Help,
=13 SM-400

-2 Al-400

-] A0-400

=3 DI-400

----- d DI =aC12me

el
PROFIBUS DF slaves for SIMATIC 57, —
M7. and C7 [distributed rach)

Drag the selected module to the rack configuration screen.

:|Z| 0] URi

Slat todule Order number Firrnwaar
1 PS 407 44 BES 7 407-00A010-0480
2
2 CPU414-2DP[1] GES7 414-2{G03-0AB0 LEN
A L5
A7 ARERAE

] 4 DIZ2«0C 240/ BEST7 421-1BLO0-0AAD

hal]

15

Chapter 1 Hardware Conversion

Logix Local I/0

A wide range of ControlLogix and CompactLogix I/O modules is available.
1769 1/O is cost-optimized for just-enough functionality as often requested by
OEMs, while the 1756 I/O family provides high feature/functionality for the
most demanding applications, as often requested by end users and sometimes
required to meet specific performance levels.

CompactLogix modules are mounted to standard DIN rail and a special
coupling system secures electrical and mechanical connection to adjacent
modules. Engineers may welcome the mechanical coupling system — with the
S7-300, modules ate fixed to a special rail only and not to each other (other
than by the electrical U-connector).

ControlLogix modules are mounted in the 1756 racks.

¢ For 1769-1.31, 1769-1.32C, 1769-L32E, and 1768-1.43 controllers, the
maximum number of I/O modules attached to the controllet’s rack is
16, in up to 3 banks.

¢ For 1769-L35CR, 1769-L35E, and 1768-1.45 controllers, the maximum
number of I/O modules attached to the controllet’s rack is 30, also in 3
banks.

e For 1756 controllers, the number of slots in the rack defines the
maximum number of local I/O modules. It can be 4, 7, 10, 13, or 17.

On both platforms, further I/O can be networked via CIP networks, where

EtherNet/IP and ControlNet networks provide the tightest, seamless 1/O
integration.

16 Publication LOGIX-APO08B-EN-P - June 2008

Hardware Conversion

Chapter 1

Publication LOGIX-APO08B-EN-P - June 2008

This table lists the Logix equivalents for some popular S7 I/O modules.

Logix Equivalents for S7 1/0 Modules

$71/0 module Description Logix Equivalent | Description
6ES7 321-1BLO0-0AA0 | S7-300 32 channel | 1769-1032 CompactLogix 32
digital input channel digital
input
6ES7 322 - 1BHO1-0AAQ | S7-300 16 channel | 1769-0B16 Compactlogix 16
digital output channel digital
output
6ES7 421-1BLO1-0AA0 | S7-400 32 channel | 1756-1B32 ControlLogix 32
digital input channel digital
input
6ES7 422-1BHO1-0AA0 | S7-400 16 channel | 1756-0B16E ControlLogix 16

digital output

channel digital
output

Refer to Appendix A for more detailed conversion tables of I/O modules.

17

Chapter 1 Hardware Conversion

Selection and Configuration of Logix I/0 Components

From the I/O Configuration branch of your project tree, the Logix library of
device profiles can be accessed. These profiles provide full wizard-driven
configuration for complete, easy-to-use integration into the data table and
intuitive programmable control over each module’s functionality, such as
scaling, alarming, and diagnostics.

M Select Module @

18

b odule Dezcription Yendor
= Diigital ~
1756-1816 16 Paink 7A%-132% AC Input Allen-Bradley
1756-I8161 16 Paink 79%-132Y AC Isolaked Inpuk Allen-Bradley
1756-I832 /8 32 Poink 744-132% AC Inpuk Allen-Bradley
1756-1480 @ Point 79%-132% AC Diagnoskic Input Allen-Bradley —
1756-1616 16 Paink 10%-31.2% DC Input Allen-Bradley
1756-1B160 16 Paink 10%-30% DC Diagnostic Input Allen-Bradley
1756-1B161 16 Paink 10%-30% DC Isolaked Input, SinkfSource Allen-Bradley
1756-1B16IS0E 16 Channel Isolated 244 Input Sequence of Events Allen-Bradley
4 32 Poink 10%-31.2% DC Input Allen-Bradley
1756-1832)6 32 Poink 10%-31.2% DC Input Allen-Bradley
1756-1C16 16 Paink 30%-60% D Input Allen-Bradley
1756-IG16/8 16 Point 0%-5.5YDC TTL Input Allen-Bradley ™
o] | 2l
Find. | AddFavorie |
By Categary By Wendar Favorites]
] | Cancel | Help |
Select an item and it will appeat in the rack in your I/O configuration.
Ela I/ Configuration
=1 1756 Backplane, 1756-A10
-0 [1]1756-L63 dev_18Aug
] [2] 1756-EWER/A local_eweh
The device profile tags for the new I/O module have been added
automatically to the controller scope tag database.
[+Fl-Local:3:C AB:1756_DI:C:0
[F-Local: 21 AB:175E_DI:0

Publication LOGIX-APO08B-EN-P - June 2008

Hardware Conversion

Chapter 1

The view below shows the tags partly expanded.

[=-Local:3C AB:TRE_DIC:O
[+H-Lacal:2:C FikerQfOn_0_7 SINT
[F-Local3:C.FilkerdnOf_0_7 SIMNT
[F-Local:2C.FilkerQfdn_2 15 SINT
[F-Local3:C.FilkerlnOf_8_15 SIMNT
[H-Lacal:2C Fikerdfidn_16 23 SINT
[F-Local:3:C.FilkerdnOf_16_23 SIMNT
[H-Local:2C FikerDfdn_24 31 SINT
[FH-Lacal:2:C FikerOnOf_24 31 SINT
[#-Local 2C.COS0NDER DINT
[+H-Laocal:3:C.COSOfORER DINT

[H-Local: 3 ABTRE_DI:D

The profile contains configuration and status data as well as I/O data.

[=-Local:0:.C ABYSE_DIC:0
[F-Local:0:C.FilkerQf0n_0_7 SIMT
[F-Local:0:C.FikerOnDff_0_7 SINT
[+-Local:0:C.FilterDff0n_8_15 SIMT
[F-Local:0:C.FikerOn0f_8_15 SINT
[F-Local:0:C.FilkerOff0n_16_23 SINT
[F-Local:0:C.FilkerOnDf_16_23 SIMNT
[F-Local:0:C.FilkerOff0n_24_31 SINT
[+-Local:0:C.FilterOnOff_24_31 SIMT
[+|-Local:0:C.COS0n0ER DINT
[+|-Local:0:C.COS0fORER DINT

[—-Local:0: AR:756_DI:L:0
[+|-Local:0:1.Fault DINT
[F-Local0:l.0vata DIMNT

LI R [ol Y FkITIM

Refer to Chapter 4 for more information.
Publication LOGIX-APO08B-EN-P - June 2008 19

Chapter 1

Hardware Conversion

20

S7 Remote 1/0

It is common to divide I/O between the controller's local rack and remote
1/0 stations, with communication under the Profibus DP network. These are
the types of Profibus DP nodes:

* S7 remote 1/0O, in which case standard S7-300 I/O modules are
mounted in a remote I/O panel and interface with the Profibus DP bus
via a special module. The controller sees this I/O as local I/O and
assigns standard I/O addresses. This is called ET200M.

* Other Siemens remote 1/O, such as ET2008S (similar to the POINT I/O
system) and ET200L (similar to the FLEX 1/O system).

* Third-party remote I/O. A number of manufacturers of I/O and valves
produce an interface to link their systems to the Profibus DP bus in the
same way as S7 remote I/O. For these systems, a special integration file
(GSD file) may need to be imported to your STEP 7 installation.

* Some manufacturers of more complex devices, such as, weigh scales and
variable speed drives (VSD), produce Profibus DP interfaces for their
products. For these systems, a special integration file (GSD file) will
need to be imported to your STEP 7 installation. It is often necessary to
refer to the manufacturer’s documentation to learn the meaning of the
data areas.

Typical S7 1/0 Configuration

Controller

S7 remote 1/0

Third-party remote 1/0

WIS

Publication LOGIX-APO08B-EN-P - June 2008

Hardware Conversion ~ Chapter 1

Configuration of S7 Profibus DP Remote /0

A Profibus DP interface module can be installed in the hardware configuration
by dragging from the hardware catalogue to the graphic of the Profibus DP
bus. Once the interface module is installed, it can be opened and standard
S7-300 modules added as if it were local 1/O.

= ¥ FROFIBUS DP -
-3 Additional Fisld Devices)

9 CiR-Object L S [or-orm)
-] Clozed-Loop Contraller
B Configured Stations
-1 DP YO slaves

- DP/ASH xreed | EFUET T
-2 DPYPA Link

@] ENCODER m’
B ET 2008
-3 ET 200C
& ET 200eco

@OIFFsTn | [GmFesTa | [mersTr

|I]P IIOP.MI |DP IlORMI |D.P IIONMI

SFozel] | @EIRID2 [EE R0

([0 | AT

B-C0 ET 20015 4m= | () RID24100
B ET 2000
ED ET 200M Slat dule ... | Order Mumber | Address [Address
o-gg IM 153 L _ _
@ M 1531 £ g M IER LS FAFIAGHIED EIEF
Mk M 1R 3 :
4 |[{ mmx12Bit EES7 331-7KFO2-04B0 512..527
5[] a04u12Bit EES7 332.5HD01-04B0 512519
& [[] onespCaay EES7 321-1BHD2-08A0 0.1
7_[l4 Die/DOBx24v 054 [BEST 323-1BHO0-0AA0 24 0
=)

The data table defines the I/O addresses associated with the drive. Symbols
for these addresses would be added manually in the Symbol Table. Hardware

configuration is now complete.

It is possible to use remote devices on the Profibus DP network along with
Logix, but with the same constraints/usability limitations you experience in the

S7 environment.

Publication LOGIX-APO08B-EN-P - June 2008 21

Chapter 1 Hardware Conversion

Logix Distributed 1/0

Rockwell Automation distributed I/O includes remote 1/O using 1756 or
1769 1/O modules and vatious distributed 1/O platforms, such as
POINT I/0, FLEX I/O, ArmotPoint, and ArmorBlock systems.

The I/O modules are connected to the network by using a communication
module or communication adapter, or directly by using a built-in
communication interface.

Configuration of Logix Distributed 1/0

All T/O configuration is done in the project tree of RSLogix 5000 software.
From the I/O Configuration branch, insert a communication module for your
chosen network type.

The screen shot shows an addition of a remote 1756-1B32 I/O module
connected via an EtherNet/IP network.

=25 I/ Configuration
-8 1756 Backplane, 1756-A10
=-) [0] 1756-EN2T/4 local_sthernet
Elz?a Ethernet

B 1756-EM2T/A local_sthernet
=] 1756-EMZT{A remote_ethernst
-8 1756 Backplane, 1756-A17
- ﬂ [0] 1756-EMZT /A remote_ethernet
[1] 1756-1632/A remote_jnputl
----- 0 [1]1756-L63 dev_154ug
----- Bl [2] 1756-EWEE{A local_sweb

----- Bl [3]1756-1B32/4 input_1

Notice that tags corresponding to the remote I/O module have been added
automatically to the controller scope tag database.

[=l-remate_ethernet:|

AB:17RE_EMET_175L0OT:1:0

H

H-remote_ethernet:]. SlatStatuzBits DIMT

H

H-remote_ethernet:|. Slok AB175E_EMET _SLOT::0017]

22

Publication LOGIX-APO08B-EN-P - June 2008

Hardware Conversion ~ Chapter 1

A networked variable speed drive, such as PowerFlex drive, can be added in the
same way.

B Module Properties: local_ethernet (Powerklex {0 EC-t 3.3)

General | Connection | Module Info | Port Configuration Diive]

2|2 g2 # - Unve: Not Lonnected |- o
= By Diive] e |

=B 0PowerFlex 70 EC
@ Parameteor List

= f 5 20-COMME PowerFlex 70 EC
{123 Pasameter List 208V 2.5A
Port: 0
i Revision: 3.003
(o]

Staus. Offfens ok | cema | v | mem |

Again, RSLogix 5000 software will generate the new tags automatically for any
device with a profile in RSLogix 5000 software and connected on an
EtherNet/IP or ControlNet network. For the DeviceNet network,
GuardLogix Safety I/O is integrated in the same way. Other DeviceNet
devices need to be set up by using the RSNetWorx configuration software and
EDS files that operate essentially equivalent to the STEP 7 Profibus manager
software and GSD files.

Publication LOGIX-APO08B-EN-P - June 2008 23

Chapter 1

Hardware Conversion

24

Shown below are device profile tags in RSLogix 5000 software, available for
hundreds of Rockwell Automation devices.

= PowerFles_Drivel

+| FowerFles_Dirive:l. DriveStatusz
PowerFles_Drive:] DriveStatuz Feady

FowerFlex_Drive:l DnveStatus_dctive

FPowerFles_Drive:] DriveStatuz_Commandie

PowerFles_Drive:] DriveStatuz_Actuallir

FowerFles_Drive:l. DiveStatuz_Accelerating
FowerFles_Drive:] DriveStatuz._Decelerating

FowerFlex_Drive:l DnveStatus_dlarm
FPowerFles_Drive:. DriveStatus_Faulted
PowerFles_Drive:] DriveStatuz_AtSpeed
FowerFlex_Dnve:l DnveStatuz_Locall D0
FPowerFles_Drive:] DriveStatuz_LocallD]
PowerFles_Drive:] DriveStatuz LocallDZ2
FowerFles_Crive:l. DrveStatuz_SpdReflDil
FowerFles_Drive:]. DriveStatuz_SpdR el
FowerFlex_Drive:l DnveStatus_SpdReflD2
FowerFles_Drive:|. DriveStatuz_SpdRefD3
+ PowerFlex_Drive:|. OutputFreg

—-PowerFlex_Drive:0

+ PowerFlex_Drive:0.Drivel ogich

PowerFles_Drive:0.DrivelogicRzt_Stap
PrusatFlawe Tirive M Dirivesl anicP et Skart

Publication LOGIX-APO08B-EN-P - June 2008

Hardware Conversion ~ Chapter 1

Networks

Publication LOGIX-APO08B-EN-P - June 2008

Refer to these sections for information about the networks.

Networks in S7

Profibus DP Network, DPV1, DPV3

In the S7 world, the principal network type for communication with devices is
the Profibus DP network in a variety of implementations. Some higher-range
S7-300 and all S7-400 controllers have built-in Profibus master ports.

Profibus Network - Other

Profibus FMS and FDL are for data communication between controllers. They
perform a similar function to the industrial Ethernet network, and the
configuration is neatly identical. The differences are that Profibus
communication processors are required rather than the Ethernet network, and
that Profibus cabling will be used.

Profibus DPv2 can be used to connect to servo drives in the S7-315T and
S7-317T controllers for low end motion control.

Industrial Ethernet Network

Siemens industrial Ethernet network is the Siemens variety of the Ethernet
network in an industrial environment. It is used mainly for communication
between controllers, and for controller-to-programming computer
communication.

Apart from some of recent controllers equipped for Profinet, S7 controllers do
not have built-in Ethernet ports. An S7 system using Industrial Ethernet will

have communication processors mounted in the racks.

Depending on the communication processor, the following protocols can be
used:

* S7 (Proprietary protocol for communication between S7 controllers)

TCP (Transmission Control Protocol) Raw Sockets
ISO-0on-TCP (Extended TCP with additional checking)
UDP (User Datagram Protocol) Raw Sockets

Application code is required to manage most aspects of communication on
these networks.

In the Rockwell Automation environment, this functionality can be

implemented using integrated EtherNet/IP ports, EtherNet/IP Bridge
modules and/or EWEB modules.

25

Chapter 1

Hardware Conversion

26

Profinet

Profinet provides for similar Profibus DP functionality on an Industrial
Ethernet with the same programming overhead requirements. A network using
Profinet is similar to Profibus except for different cable and connectors, and
use Ethernet field interface modules rather than Profibus. Controllers with a
built-in Profinet interface or a communication processor that is equipped for
Profinet are used to connect to the network.

Alternatively, an existing Profibus DP network can be bridged to Profinet,
either with a proxy or by using the Profibus DP port of a Profinet-equipped
controller.

Some Profinet field interface modules have multiple RJ45 ports with an
integrated switch, to allow a Profibus-type line bus topology, if required.

Profinet provides these three communication possibilities:

* Profinet CBA (Component Based Automation), which is primarily used
for controller to controller communication and uses standard Ethernet
hardware and the TCP/IP software stack.

 Profinet IO for scheduled transfers such as Drives or I/O modules and
uses standard Ethernet hardware, but bypasses the TCP/IP software
stack.

* Profinet IRT (Isochronous Real Time) for motion control applications
which uses Profinet specific hardware and also bypasses the TCP/IP
software stack and must exist on a protected network segment.

If the Profinet CBA framework is used, then Profibus, Profinet and Industrial
Ethernet networks can be integrated by graphical configuration, with reduced
need for additional programming, Rockwell Automation EtherNet/IP
networks provide this functionality using standard hardware and the standard
TCP/IP softwate stack utilizing built-in functions like the Message (MSG)
instruction and produced/consumed tags.

Publication LOGIX-APO08B-EN-P - June 2008

Hardware Conversion ~ Chapter 1

Publication LOGIX-APO08B-EN-P - June 2008

Networks in Logix

NetLinx is the term identifying the Rockwell Automation solution in the area
of networking technologies. The following are the primary networks used in
Logix systems:

* EtherNet/IP
e ControlNet
* DeviceNet

These networks have a variety of notable features. All are designed under the
Common Industrial Protocol (CIP), which enables you to control, configure
and collect data over any of the NetLinx networks. As a result, data can flow
between different networks without any need for protocol translation software
or proxies.

An engineer who is becoming familiar with Logix systems may be impressed
by the integrated nature and elegance in configuration of Logix networks.

EtherNet/IP Network

The EtherNet/IP network offers a full suite of control, configuration, and
data collection services. It uses TCP/IP for general messaging/information
exchange and UDP/IP for I/O messaging. It is most often used in these types
of configurations:

* General I/O control

* Data exchange among controllers
¢ Connecting many computers

* Connecting many devices

¢ Connectivity to enterprise systems
* Integration of Safety devices

* Motion control (future)

21

Chapter 1

Hardware Conversion

28

Typical Ethernet/IP Example

Publication LOGIX-APO08B-EN-P - June 2008

Hardware Conversion ~ Chapter 1

Publication LOGIX-APO08B-EN-P - June 2008

ControlNet Network

ControlNet is a real-time control network that provides transport of both
time-critical I/O and interlocking data and messaging data, including
upload/download of programming and configuration data on a single physical
media link. It is most often used in these types of configurations:

* General I/O control
* Data exchange among controllers
* Backbone to multiple distributed DeviceNet networks

Typical ControlNet Example

29

Chapter 1 Hardware Conversion

DeviceNet Network

The DeviceNet netwotk is a solution for low-level industrial device
networking, Designed for devices with a low data volume per device for real
time operation. It is most often used in these types of configurations:

* Applications containing distributed devices with a few points
* Network of third-party drives and other “simple” third-party devices

* Systems in which devices need to be connected directly to the network
with data and power in the same connection

* When advanced diagnostic information is required

Typical DeviceNet Example

Host Nelwork ’
" I‘15lZlPI DeviceNstto
ialog Flus Ethernet f Confrol Het 13051336
» -, Bridge oz AC Drives
o) = el View: E—
= ﬁ\i Family — 1394 Servo
- _ e :
(] Met i
. U euﬁg‘_ : E’,g—;{sﬁ;[E
AC Drive b, ctodect
2 Fhotodectric
Sensor

g F ' Standara
H Or SLC/PLE = 8 Semscrs

Device
Lirk K0 DeviceNet Saries 3000
Redi STATION DeviceMet
Panel Photodectric
Standard Sensor
Sensor

Dodge EZLink
Smart Bexring

Standard
Sensors

30 Publication LOGIX-AP008B-EN-P - June 2008

Hardware Conversion ~ Chapter 1

Interconnecting NetLinx Networks
There are two common ways to interconnect NetLinx networks.

» Communication backplane, allowing multiple network links at once.

¢ Communication linking devices, linking two networks together in a
seamless fashion.

Neither any controller nor any programming is requited in either of these
approaches.

Example of a Control System Based on the NetLinx Networks

L

AR

==
i
[Rockwell Automation's NetLine Open Mebwork Architecture
X . LtherseVLherNots" of FOUNUATION | ieidbus FEL
I Cosroiliat

B Dovicedit or FOURDATION Fieidbus Hi

s

Conversion of HMI Refer to Appendix B.

Publication LOGIX-APO08B-EN-P - June 2008 31

Chapter 1 Hardware Conversion

COI]\IeI'SiOII Of systems This section covers:

Containing Distributed . , o .
* how a general discrete control application containing a group of
Controllers functional units can be built using multiple controllers.

* how a similar method can be applied to a process control application
that is designed to the S88 standard.

Hardware and Software Implementation

General Discrete Control

The hardware and software model for distributed logic for general discrete
control is shown below. In this case the supervisory role will be played by a
controller. EtherNet/IP or ControlNet network can be used to interconnect
the controllers. Produce-Consume or explicit messaging can be used to
exchange data within the system.

Supervisor Controller

High-level logic

Equipment Module Commands and
Equipment Module Status

[]

Distributed Logix
Caontrollers
of Any Mix

Equipment Modules Equipment Modules Equipment Modules

(Optional)

Software Control Modules ||Software Control Modules ||Software Control Modules

32 Publication LOGIX-APO08B-EN-P - June 2008

Hardware Conversion

Chapter 1

Process Control

The diagram below illustrates the hardware and software structure for a S88

process control application. The PC will be running FactoryTalk Batch
software, which is a software package for running production batches by
means of recipes. FactoryTalk Batch software resides in a PC and
communicates with each controller via the EtherNet/IP network.

Equipment phases are configured under PhaseManager as described later on in

Chapter 2. They execute the phase logic and communicate with the control

system I/O via control modules.

FT Batch

Distribute

Contro
of Any

MMESN
frosssss=sizech

‘ EtherMet/ P MNetwork

[]

d Logix
llers
hliz

Equipment Phases

Equiprment Phases

Equiprment Phases

Software Control Modules

Software Control Modules

Software Control Modules

Publication LOGIX-APO08B-EN-P - June 2008

33

Chapter 1 Hardware Conversion

cOnnecting Siemens and There are situations in which you need to interconnect Siemens and Rockwell
. Automation equipment. We recommend that you use products from
goc!(we" Automation partnering companies grouped in the Encompass program.
evices

Controllers

Logix controllers can be connected to S7 networks by using:

¢ in-rack modules.

* standalone communication gateways.

Distributed Devices

Some of Rockwell Automation’s range of I/O systems, PowerFlex drives and
HMI terminals connects to Profibus via communication adapters, built-in
interfaces or interface modules.

34 Publication LOGIX-APO08B-EN-P - June 2008

Chapter Z

Logix Features that May Not be Familiar to S7
Users

Introduction This chapter describes Logix features that may not be familiar to S7 users.
Topic Page
S7 Organization Blocks Compared to Logix Tasks 36
Tags Not Addresses 47
I/0 and Alias Tags 51
Programming Languages 53
Add-On Instructions 57
The Common Industrial Protocol (CIP) 58
Data Exchange between Controllers 60
User-Defined Data Types 61
Asynchronous |/0 Updating 62
The DINT Data Type 62
Phase Manager 63
Coordinated System Time (CST) 65
Timestamped Inputs 65
Scheduled Outputs 65
No Temporary Variables 66
No Accumulators or Special Registers needed 66

Certain features of the Logix system are easier to use and maintain than S7 —
for instance, data is organized into tag databases with no absolute addresses,
whereas in S7 data items have absolute addresses that are selected by the
programmer in defined memory areas.

In other respects, the structure of Logix is quite similar to S7, but it is

presented differently — for instance beneath the surface the Task structure is
similar to §7's Organization Blocks.

Publication LOGIX-AP008B-EN-P - June 2008 35

Chapter2 Logix Features that May Not be Familiar to S7 Users

S$7 Organization Blocks
Compared to Logix Tasks

36

This Chapter contrasts those featutes that are different (such as tags) and
compares those features that have underlying similarities (such as tasks).

The objective is to:

* provide the S7 user converting to Logix with information that will make
the design process easier and quicker.

* show what Logix can do so engineers do not attempt to re-create what
exists within controller firmware.

This comparison of organization blocks and tasks will introduce the structure
of a Logix program to the S7 user.

Organization blocks and tasks are similar in that both are called by the
controller’s operating system, rather than by the user program. In STEP 7 (and

Logix), there are three types of organization block (task in Logix).

* Program Cycle OB (organization Continuous Task in Logix) where the
OB re-commences from the beginning when it has finished.

* Cyclic Interrupt OB (Periodic Task in Logix) where the OB executes at
a pre-configured time period.

* Hardware Interrupt OBs (Event Task in Logix) execute in response to
some hardware stimulus.

Many STEP 7 programmers do not use Cyclic Interrupt OBs.

Logix provides a user configurable multi-tasking operating system which
allows the CPU power to allocate as required by the application.

Organization Blocks in S7

The type of OB is defined by its number — they are continuously executed
(OB1 only), periodically executed (OB30 — OB38), they can be executed on
events (OB40 — OB47) or they can execute on certain faults arising, With
Logix, tasks are not numbered but are identified by a user-defined name.

A meaningful name can be attached to a STEP 7 OB if required.

Publication LOGIX-APO08B-EN-P - June 2008

Logix Features that May Not be Familiar to S7 Users ~ Chapter 2

OBT1 Program Cycle

OBI1 cycles continuously. When it has finished executing, the output image
table values are sent to the outputs, the input image table is updated from the
outputs and OB1 starts again.

A STEP 7 program doesn't have to include OB1, but if it is included, it will be

continuous.

Typical OB1 Fragment:

Hetwork 3 : Title:

callup walwe and motor control maodule

CALL "WalwveMotor Calls"

Hetwork 4 : Title:

callup switch control maodule

CALL "Switch_Calls"™

Hetwork 5: Title:

callup flow totalisers control maodule

CALL "Totaliser_calla"™

ard MY : Title:

callup analogue input control module

CALL "&nalocueln calls”

OB1 is the root of the call hierarchy for all continuously executed code.

OBI1 resembles the (only one possible of course) continuous task in Logix.
In S7 terminology, OB1 is described as “Program Cycle”.

For readers who ate more familiar with Logix than STEP 7, it may be useful to
know that in STEP 7 ladder logic, a network is the same as a Logix rung. In
STEP 7 statement list, the networks are still there but they only serve to
improve the code’s appearance. They break up the code into sections and
enable comments to be added. All of the code could be placed in one network
if desired — it would compile and run perfectly well.

Publication LOGIX-APO08B-EN-P - June 2008 37

Chapter2 Logix Features that May Not be Familiar to S7 Users

0B30 — 0B38 Cyclic Interrupts

These OBs execute at fixed, configurable intervals. Their priority may also be
configured. Higher priority OBs will interrupt any lower priority ones that are
running,

How Periodically Called OBs are Configured

Properties - CPU 414-3 DP - {R0,/53) il

General | Startup I Synchronous cycle intemupts | Cyele/Clock Memory I Retentive Memaony
Fd ermary I Interupts | Time-of-Day Intermupts Cwclic Intermupt | Diagnostics/Clock I Protection

Procezs image partition

Friority Execution [mz| Phaze offzet [mgz)
opan: [o [5000 T
0g3t: [o [2000 e
op3z. |d [1000 [
0g3z 10 [500 [
034 [11 [200 [
ogss [12 [100 [
og3e: [0 [50 E
oga7. [0 [z0 [
og3g: [0 [T e

Cancel Help

38 Publication LOGIX-AP008B-EN-P - June 2008

Logix Features that May Not be Familiar to S7 Users ~ Chapter 2

Publication LOGIX-APO08B-EN-P - June 2008

The number of periodic OBs available depends on the type of controller.
Lower priority number represents higher interrupt priority (priority selection is
only available with S7 400 controllers). Execution (ms) is the execution period
for the OB. Phase offset allows phasing the triggering of periodic interrupts
relative to each another. The process image pattition selection allows the I/O
image table to be partitioned and that partition only updated when the
interrupt occurs (this feature is available with S7 400 controllers only). Default
is the full table. In Logix, see the task I/O update selection and IOT
commands.

The content of a periodic interrupt OB typically resembles the content of
OBI1. It will consist of calls to functions and function blocks that are to be
executed at the periodicity of the OB.

These OBs resemble periodic tasks in Logix. In S7 terminology OB30 —
OB38 are called Cyclic Interrupt OBs.

0B40 — 0B47 Hardware Interrupt OBs

These OBs may be configured to trigger on an input event. Their priority may
also be configured.

These are event tasks in Logix. In S7 terminology OB40 — OB47 are called
Hardware Interrupts.

For example, the most simple hardware event that could be handled by a
Hardware Interrupt OB (or Event Task) is a change of state of a digital input.
A Hardware Interrupt (or Event Task) would guarantee a very fast response to
the change.

Event tasks are more flexible than Hardware Interrupt OBs, with triggers not

only from I/O, but also from network events, program instructions and
motion events.

39

Chapter 2

Logix Features that May Not be Familiar to S7 Users

40

Program Structure in STEP 7

A typical program includes Organization Blocks (OB), Function Blocks (FB),
Functions (FC) and Data Blocks (DB). System Function Blocks (SFB) and
System Functions (SFC) will usually be present.

* From Organization Blocks (Program Cycle or Cyclic Interrupt or both),
calls are made to Function Blocks and Functions.

¢ A Function Block contains code, and is associated with a Data Block
that contains the static data the FB requires. In addition to static data,
the FB has temporary data. FBs are used when the logic must preserve
values between executions.

* A Function contains code but has no static data. It has temporary data.
FCs are used when the logic completes on a single execution — it has no
need to preserve values.

* Data Blocks are areas for storage of static data. They will be described in
the next section.

» SFBs and SFCs are System Function Blocks and System Functions.
They can be copied from libraries that are included with a STEP 7
installation and placed in a project.

* When this has been done, they can be called from anywhere in the
program.

In STEP 7 there isn't an equivalent structure to Logix's Program/Routine. The

OB will be the root of the call chain to FBs and FCs, but how that is done is
up to the programmer.

Publication LOGIX-APO08B-EN-P - June 2008

Logix Features that May Not be Familiar to S7 Users ~ Chapter 2

Tasks in Logix

Tasks are called by the operating system. A task provides scheduling and
priority for one or more programs. Each Program contains a data section and
one or more code routines.

The tasks may be periodic, event or continuous. Each task may be assigned a
priority. The continuous task, if present, is always of the lowest priority.

A Logix project will have one task whose default name is MainTask. This task
can be continuous, periodic of event. You can change its name if you wish.

Task and Program Structure in Logix

This snapshot from a sample RSLogix 5000 project tree helps illustrate how
tasks and programs are structured.

=145 Tasks
= ‘5 event_task
= % event_task

E F_"‘ Program Tags
------ Eij event_tautine
=458 MainTask
El-ﬂ fainProgram

- Program Tags
----- Eij MainF.autine
----- Z) INDEXED_COPY_STR
= % task_0zs

o] F‘ru:ugram Tags
----- B3 valves_calup
& % EM1
- Program Tags
----- Eij EM1_routine
=479 task_04s
E|E§J analogueln_calup
[@ Program Tags
3 callup

----- (3 Unscheduled Programs | Phases

In the screen shot above, the icon to the left of “event_task” signifies an event
task. The icon to the left of “MainTask” signifies a continuous task and the
icon to the left of “task_02s” signifies a periodic task.

Publication LOGIX-APO08B-EN-P - June 2008 Ll

Chapter 2

Logix Features that May Not be Familiar to S7 Users

42

Periodic Tasks

Periodic tasks will trigger at a constant configured interval. Configuration of

the period and priority is shown below.

& Task Properties - kask_D2s - Ol x|

General Configuration | Program / Phase Schedulel Munitorl

Type:

Penod: IEDD.DDD s

Pricrity: I'l 1] 3: [Lowwer Mumber Yields Higher Priarity]

Wwatchdog: IEEIEI.EIEIEI ms

[™ Disable Automatic Output Processing To Reduce Task Overhead

™ Inhibit Task

(1] I Cancel Apply Help

Configuration is similar to the OB30 — OB38 configuration page that was

described in the section “OB30 — OB38 Cyclic Interrupts”.

Publication LOGIX-APO08B-EN-P - June 2008

Logix Features that May Not be Familiar to S7 Users ~ Chapter 2

Scheduling of Periodic Tasks
The purpose of the Task system is:

* to allow the programmer to choose appropriate frequencies for the
execution of Programs. By executing code no more frequently than is
needed, the controller CPUs power is used more efficiently for
application priorities.

* to use the priority system to allow critical tasks to interrupt lower
priority ones, therefore giving them a better chance of executing at the

intended frequency.

It is easy to check these times from Task Properties /Monitot.

f& Task Properties - task_02s _ O] x|
Generall I:::unfiguraticunl Frogram / Phaze Schedule Maonitor I

Scan Timesz [Elapzed Time]:

Max [0476000 s €

Last: |u.25mnn s

|nterval Times [Elapsed Time Between Triggers):

Max |200.030000 i

Min: |199.974000 ms

T ask Owverlap Count:

—

] | Cancel Apply Help

Publication LOGIX-APO08B-EN-P - June 2008 43

Chapter 2

Logix Features that May Not be Familiar to S7 Users

44

What will happen if a trigger occurs while a task is running?

* If the new trigger is for a task with a higher priority than the one
running, the running task will be interrupted by the new one, and will
resume when the higher priority task is complete.

* If the new trigger is for a task with a lower priority than the one
running, the running task will continue, and the new task will wait until
no task of a higher priority is running,

* If the new trigger is for a task with a same priority as the one running,
the controller will run both tasks by switching between them at 1ms
intervals.

* If the new trigger is for the same task as the one that is running, the new
trigger will be discarded. This is an overlap condition.

The number of overlaps that occurred since the counter was last reset is shown
in the task properties window. A non-zero number indicates that the interrupt
period needs to be increased.

TIP Avoid switching tasks unnecessarily, due to the amount of
processing power that is wasted during unnecessary switching.

When you program periodic interrupts in Logix, note these similarities and
differences with STEP 7:

* In STEP 7, calls will be made from the OB that is configured to execute
at the chosen frequency to the Functions and Function Blocks you wish
to execute at this frequency. In Logix, you will insert programs and
routines in the project tree under the Task.

* In both STEP 7 and Logix, the actual application code will not differ
greatly from the code in a continuous execution task. Note that the
constant and known frequency of a periodic task gives programmers the
opportunity to turn a simple variable increment into a timer.

* In both systems, you will need to check for overlaps as you develop and
test your code. The execution time of the OB or Task must be much less
than its execution period.

* Checking the execution time for Logix tasks is easy. Use the task
properties screen shown above. In STEP 7 you will need to sample the
system clock at the start and end of the OB, subtract the values and
store the result in a variable for monitoring,

* Ina S7 controller, overlaps will cause the controller to stop unless a fault

OB is added that traps the fault. Logix is less strict and merely counts
the number of overlaps.

Publication LOGIX-APO08B-EN-P - June 2008

Logix Features that May Not be Familiar to S7 Users ~ Chapter 2

Publication LOGIX-APO08B-EN-P - June 2008

* In STEP 7, it is possible to phase the execution of petiodic OBs relative
to one another. This is not available with Logix Tasks.

Event Tasks

Event Tasks will execute when a configured trigger event occurs. Normally
they would be given higher priority than periodic tasks.

f Task Properties - event_task =101 %]

General Configuration” I Fragram / Phase Schedulel Ml:unih:nrl

Type: |Event j
Trigger; EVEMT Instruction Only j
Awiz Watch
Tag: Awiz Regiztration 1
Axiz Fegiztration 2
[Execute Task|Mation Group Execution s
EVEMT Inztruction Only
kodule [nput D ata State Change
Priciriky: Consurmed Tag er Priarity]

W atchdon: IEEIEI.EIEIEI ms

v Dizable Automatic Dutput Proceszing To Feduce Task Overhead

[~ Inhibit Task

| k. I Cancel Apply Help

An event task is configured by opening the task's Task Properties page and
selecting Type Event. Different types of event task triggers can be used for
different Logix controllers.

45

Chapter 2

Logix Features that May Not be Familiar to S7 Users

46

Continuous Task

A Logix controller supports one continuous task, but a project doesn’t have to
include the continuous task. You can if you wish run your entire program
under Periodic and Event Tasks.

You can configure whether the continuous task updates outputs at the end of
its execution.

You can if you wish adjust the percentage of your CPU’ time that is spent on

unscheduled communication as a percentage of time dedicated to the
continuous task.

Task Monitor

RSLogix 5000 software includes a tool called Task Monitor that can help with
analyzing scheduled tasks, and much more.

The screen shot below shows how information about your controller’s tasks
can be viewed in one table.

fj Logix5000 Task Monitor - dev_18Aug[1756-L63] & IEllil

Cormmunications Oplions

Help

User Tasks | F'ru:u:essesl F'erfu:urmanu:el Netwurkingl EtherNet;"IF‘I

I arne | R ate | CPL | Fricrity | Last Scan | Max Scan | W atchdog | Dverlapl Stat
Ea bl ainT azk. *000.000us 0.70% Lowest 3524us h.852us B00,000us 1] Runr
E@ task_02s 200,000u: 016X 9 h48us 394us B00,000us 1] Runr
E@ task_Ods 4000000 0.04% 10 TEdus 1.182us B00,000us 1] Funr
E‘E_ﬁ tazk_073 100.000u: 017% 5 1340z 4260 R00,000uz] Runt
E} event 10,0000z 0.00% 10 I} 1] RO0,000uz] Stopy

The other tabs provide a wealth of other system-level information on your
controller’s performance. The tool is included as standard on the RSLogix
5000 installation disk.

Publication LOGIX-APO08B-EN-P - June 2008

Logix Features that May Not be Familiar to S7 Users ~ Chapter 2

Tags Not Addresses One of the first major differences that a S7 user will notice when starting to
work with Logix is that data doesn't have addresses. Data items are created in a
tag database, and RSLogix 5000 software allocates addresses “behind the
scenes”. This makes it unnecessary for users to understand and manage
memory addresses. This section describes data allocation in the two systems.

Data Areas in S7

Data Areas in S7 Controllers

Address Area S$7 Notation Unit Size
Process Image Input Table | Input Bit

IB Input Byte

W Input Word

ID Input Double Word
Process Image Output Table | Q Output Bit

0B Output Byte

aw Output Word

ab Output Double Word
Bit Memory M Memory Bit

MB Memory Byte

MW Memory Word

MD Memory Double Word
Timers T
Counters C
Data Block DBX Data Bit

DBB Data Byte

DBW Data Word

The sections below say more about the two most commonly used areas in
programming — bit memory and data blocks.

Publication LOGIX-APO08B-EN-P - June 2008 a7

Chapter2 Logix Features that May Not be Familiar to S7 Users

Bit Memory
“Bit Memory” locations are denoted Mx where, for example:

* M5.3 is a bit.

* MBG is a byte (BYTE).

* MWS8 is a 16 bit word (WORD).
MD10 is a 32 bit word (DWORD).

Bit memory locations can be labelled in the Symbol Table (similar to a PLC-5
or SLC Symbol Table), as shown in the following screen shot.

Status | Symbol Address Data type Comment
EXT_ZOMEZ_Oh @ 282 BOOL EXTRUDER ZOMES CM
EXT_ZOMES_Ok @ 283 BOOL EXTRUDER ZOMES CM
EXT_ZOME4 Ok @ 284 BOOL EXTRUDER ZOME4 O
EXT_ZOMES_Oh @ 285 BOOL EXTRUDER ZOMES CM
FALSE h oo BOOL
Flowe Totalizer ot 10 oT 10
FSL24001 | 100 BOOL
FsL24002 | #0 BOOL
FsL24003 | 1086 BOOL
FT24001 PRy 530 IMNT
FT24002 Py 525 IMNT
FT24008 Py 570 IMNT
GET_IMDEXED_REFE... [FC 111 Fooo 111
Global_Data DB 99 DE 99
IFI¥_alarms DE 7 [/ = I
INDEXED_COMPARE FC o102 FCoo102
IMDEXED_COPY FCoo101 Fooo101
Interlocks_Handler FB 70O FB 7O
Interrupt_Execution 0B 35 oB 35
JURK_BIT h 0z BOOL
KTROM_CmdzFromM... (DB 33 (] = A Commands & Setpointz From Manufacturing PLC
KTROM_StstusToMan... | DB 32 DB 32 Feeder Status to ManufacturingPLC
LF24001 8, I | BOOL PIG LALMCH WALVE
LF24002.8, @ 185 BOOL PIG LALMCHER
LF24003.8, @ 104 BOOL PIG LAIMCHER

48 Publication LOGIX-APO08B-EN-P - June 2008

Logix Features that May Not be Familiar to S7 Users

Chapter 2

IF Fil= Edit

Data Blocks

Data Blocks have similar status to other blocks — Organization Blocks,
Function Blocks and Functions — except that they contain data rather than
program code. The memory in Data Blocks is static — the data retains its value
until it is changed.

Example of a Data Block

Insert PLC Debug Wiew Options

Window Help

D] & &[] o] el [E @ <> Ol s

Address (Hame Type Initial wvalue Commne:;
0. STRUCT
+0.0| |Grantrezialts_3iP REAL 0.000000e+000 Grant
+4.0| |Grantrezialts_FeedFact REAL 0.000000e+000 Grant
+8.0| |CMC_5P REAL 0.000000e+000 CHMC 3
+12.0([CMC_FeedFactl FEAL 0.000000e+000 CHMC I
+16.0| (SiliconDioxide_3P REAL 0.000000e+000 dilic
+20.0((Filiconbioxide_ FeedFact FEAL 0.000000e+000 Gilic
+24.0([Maleicikecid 5P REAL 0.000000e+000 Malei
+28.0([Maleicicid FeedFact FEAL 0.000000e+000 Malei
+32.0| |Sequence_Cmds STRUCT
+0.0 PrimeMaterials BOOL FALSE Loads
+0.1 GrartProduction EOOL FALSE Jtarc
+0.2 EndProduction BOOL FALSE EndFPr
+0.3 Stop BOOL FALSE Stop
+0. 4 Faultick EBOOL FALSE Ackno
40 5 Srarel RN FLT.EF

Data Block symbols do not appear in the Symbol Table, but the name of the
Data Block does.

Data Blocks can be assigned to hold the data used by Function Blocks. These
are called Instance Data Blocks.

Publication LOGIX-APO08B-EN-P - June 2008

49

Chapter2 Logix Features that May Not be Familiar to S7 Users

Data in Logix

In the RSLogix 5000 programming environment, data is set up in a tag
database. Memory addresses are hidden from the programmer, which makes
things easier for the programmer.

Tag Database

Controller Tags - dev_1BAug{controller)

Scope; E{l dev_184ug - Shaw... Show All

| MHare o |.t'-‘«|ias Far | Baze Tag [rata Type | Style Description
_I + -analngueln__'l | lDINT _Decimal
J Blue_Button Local:3:1.Datal Locak3:l.Datal BOOL Decimal
J_+ CompactLogix_1_consume [| |UDT_STEP_SEQUENCE |
J +-CantrolLogix_1_produce | UDT_STEP_SEQUENCE |
J + Dirive:l| A8 PowerFlex70EC Driv...
Select a Tag from a Pull-down Menu While Programming
[|
| Mame |Data Type |Descripti|:|n ﬂ
—am1 Data.step(0] BOOL Data - step sequ... litie= far &
—em Data.step(1] BOOL Data - step sequ... -ERCUENCEr
—am1 Data.step(2] BOOL Data - step seqgu... EQUENCER_E4-
1 — equencer —
—eml Data . step(3] BOOL Data - step seqgu...
B4 EMM_backing [...]
—em1 Data step(4] BOOL Data - stepozequ... | o il Data
| Lontroller
| Frogram
Show: Show Al 55 |
|| em1Data. step(0] LI end_zer
2 HE—————— | =— bR ——
STEP 1 idump to step 3
Data - step
Data - step sefuUence EM
Fequence step number sequencer step

In Logix, there is a controller-scope tag database and program-scope
tag databases associated with each Program.

* Tags in the controller-scope database are global and can be accessed by
routines in any part of the program.

* Program-scope tags can only be accessed by routines in that Program.

50 Publication LOGIX-AP008B-EN-P - June 2008

Logix Features that May Not be Familiar to S7 Users ~ Chapter 2

I/0 and Alias Tags

An alias tag lets you represents another tag, while both tags share the same
value. One of the purposes of aliases is to reference the I/O tags as described
below.

I/0O modules can be added to a project by adding the module to the controller
backplane in the project folder.

EE Daka Types

#-Lp User-Defined
Eﬂ, Strings

&L add-On-Defined
=Ly Predefined
Ly Module-Defined

=25 If Configuration
]88 1756 Backplane, 1756-410
B [o] 17562 A n_t
o [1] 1756163 dev_18AUG
o Bl [2] 1756-EWEESA local_eweh
[3] 1756-1B32/4 input_1

In this case a 32-point input card has been added at slot 3. The slot number is
in square brackets at the beginning of the line. “1756-1B32/A” is the part
number of the card. “input_1" is a name for the card that is configured when
the card is first added to the rack.

Having added the card, RSLogix 5000 software will automatically generate the
relevant device profile tags to the Controller-scope tag database. They are the
Local:3:1 input and Local:3:C configuration tags below.

Controller Tags - dev_18Aug(controller)

Scope: | ﬁl dev_184ug

j Show... | Show Al

M ame & | Aliaz For | Baze Tag Data Type Shyle
| =/Local3 | : AB:1756_DI:1:0
|+ Local3:| Faul | DINT Binary
| — Local3lData _DINT _Binar_l,l
] | Local:3:.Datal BOOL |Decimal
| Local:3:].Datad EH:II:I_L _Deu_:imgl
| Local3:l.Data 2 ‘BOOL |Decimal

Publication LOGIX-APO08B-EN-P - June 2008

51

Chapter2 Logix Features that May Not be Familiar to S7 Users

You can create a new alias tag with a more descriptive name. For instance, an
alias for the first input can be created called Limit_Switch_1, which physically
describes this input.

Controller Tags - dev_18Aug(controller)

Scope: |ﬂ{|dev_18.ﬁ.ug j Show... | S b Al

| M ame [l | Aliaz For | Baze Tag Data Type Style

|J Lirnit_Swaitch_1 Local:3:1.Data.0 Local:2:1.0ata0 BOOL Decimal

In STEP 7, the hardwate configuration tool will assign addresses to an I/O
card when it is added to the system. For example, a digital input card might be
assigned bytes 116 and 117. Then the programmer will identify the bit address
for each input and enter a name against it in the symbol table. Once that is

done, the program will automatically make the association 116.5 =
“ZS8C2036”.

52 Publication LOGIX-APO08B-EN-P - June 2008

Logix Features that May Not be Familiar to S7 Users ~ Chapter 2

Programming Languages

Publication LOGIX-APO08B-EN-P - June 2008

This section describes the programming languages that are available with
STEP 7 and RSLogix 5000 software. All languages are not standard; it depends
upon the version of the software purchased. Selection of the Logix language
most suitable to the task will result in easier program design, more rapid
coding and a program that is easier to understand.

There is one significant difference between the S7 and Logix languages. In S7,
Statement List is the “native” language of the controller. Other languages are
translated to STL. In Logix, all the languages are “native” languages in the
controller — each is compiled without reference to any of the others. The
benefit of this is that when you upload a program from the controller, you
view it in the language it was written in.

STEP 7 has three standard languages:

* Statement List (STL) — could be described as high-level assembler.
* Ladder Logic (LAD)
* Function Block Diagram (FBD)

And some optional languages:

* Structured Text (ST)
¢ CFC - Continuous Flow Chart for process-type applications
* HiGraph — Sequential control via Graphing software

* ML — Motion Language — similar to GML in the older Rockwell
Automation dedicated 1394 motion controller

A program can consist of Function Blocks and Functions written in different
languages.

RSLogix 5000 software has four programming languages:

* Ladder Diagram (LD) — comparable to Siemens LD, with an expanded
instruction set.

* Structured Text (ST) - Equivalent to Siemens ST
* Function Block Diagram (FBD) — Equivalent to Siemens CFC
* Sequential Function Chart (SFC) — Comparable to Siemens hiGraph.

53

Chapter 2

Logix Features that May Not be Familiar to S7 Users

54

A Routine — the basic section of code in Logix — can be in any of these, and a
program can be made of routines written in different languages. The following

screen shot gives an example.

This is a ladder diagram. _—

This is structured text. __i—

This is a sequential

function chart.

Logix Ladder Diagram

EI% MainTask,
=& MainProgram

i@ Program Tags

/r add_test_DINTEGDIMT_LD

----- Add_Test_DINTEQDINT ST
-[B| add_test INTEaDINT LD

/,y- add_test INTLoDINT ST

|| add_test IMTEQIMT LD
----- add_test INTLoIMT ST
array_test

----- array_test_aT

E_] cpk_kest
eatly_examples

----- G553V

----- GE5Y 55V ST

misc

Bl state_machine_test_LD
&% state_machine_test SFC
e state_machine_kest_sT

Traditionally, Ladder Diagram is used for implementing Boolean
combinational logic. In Logix, it can also be used for sequential logic, motion,
data manipulation and mathematical calculations, although other languages
may be more convenient for these tasks.

Logix Structured Text

Structured Text is a high level procedural language that will be easy to learn for
anyone with experience in Basic, Pascal or one of the ‘C’ family of languages. It
is used primarily for data manipulation and mathematical calculations,
although motion, combinational, and sequential logic can also be easily

programmed in ST.

Publication LOGIX-APO08B-EN-P - June 2008

Logix Features that May Not be Familiar to S7 Users ~ Chapter 2

Logix Function Block Diagram

Function Block Diagram describes graphically a function (Boolean or
mathematical) relating input variables and output variables. Input and output
vatiables are connected to blocks by connection lines. An output of a block
may also be connected to an input of another block.

It is good practice to program PID loops in FBD. It is the most convenient
language for process control.

Logix Sequential Function Chart

SFC is a graphical tool for describing sequential logic as a set of states and
transitions. Outputs may be assigned to a state, and Boolean conditions for
transitions to other states defined.

Conversion of STEP 7 Code to Logix

* If you have STEP 7 ladder logic code that you wish to convert it to
Logix, LD should be your first choice. The meaning of LD is similar in
both systems.

* If you have STEP 7 function block diagram code that you wish to
convert it to Logix, FBD should be your first choice.

* Note that the standard Logix FBD is more advanced than STEP 7 FBD,
and is equivalent to the optional STEP 7 language CFC.

¢ If you have STEP 7 Statement List code that you wish to convert to
Logix, the most suitable language will depend on the nature of the STL
block. If the STL block contains mainly Boolean evaluations, LD would
probably be the best Logix language to convert to. If the STL block
contains pointers to access and manipulate data, or executes
mathematical calculations, ST would probably be the best Logix
language to convert to. If the STL block contains sequential logic, SFC
should be considered, although sequential logic can also be easily
implemented in ST and LD.

Publication LOGIX-APO08B-EN-P - June 2008 55

Chapter 2

Logix Features that May Not be Familiar to S7 Users

56

CALL

refirray
index
bytelncr

Arrays not Pointers

In STEP 7, arrays can be defined exactly as they would be in Pascal or C, but
the basic languages (STL, LD and FBD) do not have high-level support for
accessing them. Instead, pointer routines must be constructed.

STEP 7 library functions lack support for array access. Programmers who are
comfortable with pointers can write their own functions such as FC101
“INDEXED_COPY” (see below) but it requires skill and time.

“INDEXED_COPY” in STEP 7 does the same as the Logix instruction COP
for indexed copying.

"INDEXED COPY™ FClol

index3rc:=#index in
gource :="Instance_FBZ".table P#DE4.DEX0.0
indexDati=1

i="Instance FEZ".target P#DE4.DEX26.0
t=5

FC111 below will access an array.

"GET_INDEXED_ REFERENCE" FC111
:="Instance_FBE2".table P#DE4.DEXO. 0
i=#index_in
=32

startIndex: =TRIE

retiVal

HEE 32}

The pointer to the object is returned in parameter #ptr, which can then be
dereferenced to get the data.

In Logix, arrays can be both defined and accessed in the usual way of a
high-level computer language, as the fragment below illustrates.

fSF copy a string from a table of strings ftable
ff to a target string #target. The index is findex in

COPitablelindex_inl, target, target.LEN):

Publication LOGIX-APO08B-EN-P - June 2008

Logix Features that May Not be Familiar to S7 Users ~ Chapter 2

Add-On Instructions

Publication LOGIX-APO08B-EN-P - June 2008

Add-On Instruction Summary

Add-on Instructions are the equivalent of STEP 7 Function Blocks, with
private data and advanced parameter choices. In particular, the INOUT
parameter type or “pass by reference” makes it possible to efficiently pass data
structures to the code.

Because the Add-On Instruction is so similar to the STEP 7 Function Block, it
is likely that the S7 programmer who is converting to Logix will make use of it
quite readily.

Comparison between FBs and Add-On Instructions:

* Both can be called as named functions from anywhere in the program.

* Both contain a private data area of static data, although it is not truly
private in the case of STEP 7.

» A STEP 7 function block also has a temporary data atrea.
* In the Add-On Instruction, local static data will do the same.

Both have three types of parameters — input (pass by value), output (pass by
value) and in-out (pass by reference). The pass by reference parameter is a
considerable benefit, since it allows large data structures to be passed
efficiently.

The Add-On Instruction will automatically maintain a change history by
recording a timestamp and the Windows user name at the time of the change.
This is not available with STEP 7 Function Blocks

With the Add-On Instruction a pre-scan routine can be configured to run
when the controller goes from Program mode to Run mode, or powers up in
Run mode. Under these conditions, the pre-scan routine will run once, and can
typically be used to initialise data. In STEP 7 the Organization block OB100
does the same, but the pre-scan code cannot be specifically attached to a FB.

If the Add-On Instruction is called from a SFC step and the SFC is configured
for Automatic Reset, a post-scan routine defined in the Add-On Instruction
will execute once when the SFC exits that step. It could be used for resetting
data. A STEP 7 FB has no built-in equivalent (although it is easy to program).

An Add-On Instruction can have an EnableInFalse routine, which will be
called (if present) when the rung condition at the Add-On Instruction call is
false. In this case, the input and output parameters will pass values. A STEP 7

FB has no equivalent.

Add-on Instructions are explored further in Chapter 4.

57

Chapter2 Logix Features that May Not be Familiar to S7 Users

Backing Tags

Many instructions and data types use backing tags — tags that are created
specifically for the instance of the instruction or data types that you are
instantiating. Add-On Instructions, timers, counters, messages, and PID
control all use backing tags. RSLogix 5000 software will generate the
corresponding structure of elements for you anytime you create a tag of that
type so you do not have to create the elements on your own.

Controller Tags - dev_1BAug{controller)

Scope: J ﬁ{l dev_18400

L] Show.. | Show Al

M ame 2 | Aliaz For I Baze Tag | Data Tppe | Style
= Timer1 TIMER
|+ Timerl.PRE DINT Decimal
+ Timerl.ACC DINT Decimal
| Timerl.EM |BOOL Decimal
Timer1.TT BEOOL Decimal
| Timerl.DM (BOOL | Decimal

The Common Industrial
Protocol (CIP)

58

Logix uses three main networks - Ethernet/IP, ControlNet and DeviceNet.
Each has characteristics suitable for different areas of application. The three
network types share a protocol, the ‘Common Industrial Protocol’.

The CIP makes it possible to transfer data via any of the three types of
networks supported by Logix with a neatly identical configuration and
programming interface for all three. Also, data can be transferred through a
network built from more than one of the three network types without any
need for the programmer to translate protocols.

In “traditional” S7 the two main protocols are Industrial Ethernet, for
networking to I'T and to other controllers, and Profibus DP for networking to
field systems. These two protocols are separate at the hardware level and the
data level. With the latest S7 hardware and software, “Profinet CBA” integrates
Industrial Ethernet, Profinet and Profibus.

Publication LOGIX-APO08B-EN-P - June 2008

Logix Features that May Not be Familiar to S7 Users ~ Chapter 2

Viewing the Network

S7 users may find the Logix network configuration and management striking,
As an example, the tree below shows the devices actually connected to the
system. This tree was produced by going online — nothing was configured.

= g ‘Wharkskation, EUBEERUPMATE K1
+- == Linx Gateways, Ethernst
=R Training, Ethernet
=W 172,16,99.10, 1769-L32E Ethernet Port, 1769-L32E Ethernet Port
= ﬁ Backplane, CompactLogix System
+ B 00, CompactLogix Processor, 1769-L32E0A INT_16_70
¥ 01, 1769-L3ZE Ethernet Port
= [ﬂ 03, Local 1769 Bus Adapter, YA1769/4
=-ff 1769 Bus, 1769 Bus
{ﬂ 00, Local 1769 Bus Adapter, YA1769/4
E 01, 1763-24v¥dc Input, Relay Output Combo/B
D 02, 1763-2Ch Quadrature, 4Ch Single-ended HSC Input
+-[1 03, 1769-5DN Scanner Module, 1763-5DN
H 04, 1763-Combo Analog 4pt Inpuk, 2pt Oukpuk
D 05, 1763-16pk 244%de Source Qukput/E
-6 172,16,99,11, 1785 Ethernet to DeviceMet Linking Device, 1733-ENZDM Linking Device
- == DeviceMet, Devicelet
+-f] 01, 1756-0MB
w02, 179105-IB6X0ES SPL/SPE Safety DC_InputiDC_output
@@ 07, 17838 Ethernet to DeviceMet Linking Device
= g 172.16,99,13, 1734-AENT PointIO EtherMet/TP Adapter, 1734-AENT Ethernet/IP Adapter
- iE3 Backplane, PointI0 Chassis 5 Slot
] 00, 1734-8ENT PointI0 Etherhlat/TP Adapter
1] 01, PoinkIo 4pt 24vdc Sink Input, 1734-164 4 PT 24¥DC SINK TN
'E} 02, PointIO 4pk 24Yde Source Output Enhanced, 1734-064E 4 PT 24%DC SOURCE OUT
8 03, PointIo 2pt Analog Yoltage Input, 1734-1E2% 2 PT YOLTAGE INPUT
1] 04, PointIo 2pt 24vdc Analog Yolkage Oubput, 1734-0E2¥ 2 PT YOLTAGE OUTPUT
=[] 172.16.99.2, 1756-ENET/A, 1756-ENET/A
- B3 Backplane, 1756-A1014
g 00, 1756-0B32/4, 1756-0B3218 DCOUT
4] |

01, 1756-L62 LOGIXESE2, 1756-L621A LOGINEE62
0z, 1756-181600A, 1756-IB16D)A DCIN DIAG
+ a 03, 1756-L63 LOGIXE5E3, 1756-La31A LOGINEE63
04, 1756-0B160/A, 1756-0B16018 DCOOUT DIAG
H 06, 1756-EMET/A
B 09, 1756-IB16150E/A, 1756-B16ISQE)A
#-f 172.16.99.3, 1756-ENET/A, 1756-ENET/A
& 172.16.99.4, 1794-AENT FLE¥ IO Ethernet Adapter, 1794-AENT/A
+ E 172.16,29.5, YersaView CE 1000H, Panelview_Plus-CE

Networks are described further in Chapter 1.

Publication LOGIX-APO08B-EN-P - June 2008 59

Chapter2 Logix Features that May Not be Familiar to S7 Users

Data Exchange Send / Receive in STEP 7
between Controllers

To prepare controller to controller communication in STEP 7, these steps are
taken.

1. The remote stations are configured graphically in a STEP 7 component
called NetPro.

2. A connection table is built in NetPro specifying the protocols and
parameters for each of the connections.

3. The library functions FC5 AG_SEND and FC6 AG_RECYV are copied
into the project.

4. Calls are made from the user program to AG_SEND and AG_RECYV,
specifying connection parameters and the data areas that are being used
to source and receive the data.

Produced / Consumed Tags in Logix

Produced and consumed tags are the way that critical data is transferred
between networked Logix controllers every defined time period. Produced and
consumed tags can transmit over Ethernet/IP or ControlNet and on the
backplane of Controllogix controllers.

Produced and consumed tags are tags that are configured as produced or
consumed when they are created. If a tag is marked as produced, then its value
will be multicast to a EtherNet/IP or ControlNet network that the controller
is connected to. If it is marked as consumed, then the controller that the tag
requires data from will be identified as part of the configuration, and the
consumed tag will receive its value from the equivalent produced tag in that
controller.

There are separate channels for send and receive. Changing the value of a
consuming tag will have no effect on the producing tag. This resembles
controller-to-controller communication in S7 and differs from
controller-to-SCADA communication, where any change will be reflected at
the other end.

No programming is required to set up produce/consume connections. This
contrasts with S7, where some coding is needed for controller-to-controller
(SEND/RECEIVE) communication.

60 Publication LOGIX-AP008B-EN-P - June 2008

Logix Features that May Not be Familiar to S7 Users ~ Chapter 2

User-Defined Data Types In Logix, User-Defined Data Types can be configured. This allows the
structure of a complex data type to be declared as a type. Instances of that type

can then be defined in the program.

Logix User-Defined Data Types have very similar configuration and usage to
STEP 7 User-Defined Data Types.

Logix UDT
T = 1OT_RAMPER
Dezcrption: Ramps a real ;I
wvarniable from its
cument valuze to a|
new value at a
zpecified rate. _I
b embiers: Data Tupe Size: 28 byte(z]
[arne Drata Type Style D escription

initial_output REAL Flaat saved initial output
increment REAL Flaat calculated increment
RamP_RATE_ABS REAL Float per second - [set always +ve)
RAMP_TARGET REAL Flaat final value - [zat]
change REAL Float calculated change over ramp
counter DINT Decimal internal counter
complete BOOL Decimal ramping is complete
_enahle BOOL Decimal for emable one shaot
enabled BOOL Decimnal ramper enabled

10f

Lyl

Publication LOGIX-APO08B-EN-P - June 2008 61

Chapter2 Logix Features that May Not be Familiar to S7 Users

Asynchronous 1/0 Updating

The DINT Data Type

62

In Logix systems, I/O is updated asynchronously with respect to program
execution petiods, in contrast with the traditional PLC approach as used in 87
where an I/O image table is updated at the start of the cycle and input values
do not change during an execution of the program.

The Logix programmer will need to consider whether there is any need to
buffer input data, so that its value remains constant duting program execution.

It is quite common to “consume” inputs once only by passing them as
parameters to a code module. The inputs will not be used anywhere else in the
program. This removes any need for buffering. See the Control Module

example in Chapter 4.

Logix controllers operate on DINT (32 bit integer) tags more efficiently than
on INT (16 bit integer) or SINT (8 bit integer). Use DINT whenever possible,
even if the range of values you are working with would fit in an INT or a
SINT. These data types are provided for IEC61131-3 compatibility reasons,
but are internally converted to DINTS before being used by the program, so
code will execute more efficiently in most situations.

Publication LOGIX-APO08B-EN-P - June 2008

Logix Features that May Not be Familiar to S7 Users ~ Chapter 2

Phase Manager

Publication LOGIX-APO08B-EN-P - June 2008

Phase Management in STEP 7

STEP 7 possesses no built-in tools to perform phase management. The
necessary structures must be programmed in a set of routines, typically
referred to as the PLI or Phase Logic Interface. The components for a PLI
program based on S88 are:

* A step sequencer whose behavior complies with the S88 state model.
Certain steps or ranges of steps define the S88 state. Sequencer
commands ate also as specified by S88, and the sequencer will respond
only when the state model permits. A sequencer with these properties is
called a phase.

* A set of data for each phase that is used to record the status of the phase
and to receive incoming commands from the recipe manager. The recipe
manager communicates with this data. The format of the data will
depend on the recipe manager.

* A logic module that translates the phase status into the format required
by the recipe manager, and translates commands from the recipe
manager into phase commands.

PhaseManager in Logix

In an S88 Equipment Phase, there are specified states of the phase as well as
the transitions between these states. The PhaseManager is a functionality of
RSLogix 5000 software that allows you to do three things:

¢ Allocate the code for each phase state to a different routine.
* Run a state machine “behind the scenes” that handles the transitions
between states of the phase.

* Manage the running of the phase using a set of Logix commands.

Itis used in a variety of application spaces, including but not limited to Process
Control and Packaging, because it allows for clean separation of
Device/Equipment control and of Procedural control, hence making code far
more modularized and efficient, especially for larger systems where
standardization.

63

Chapter 2

Logix Features that May Not be Familiar to S7 Users

64

Equipment Phase in the Project Tree

L‘—_l% MainTask,
23 L, mainProgram
=8 ﬁ Eqmpment Phase_1

------ E@ Restarting

----- ﬁ%@ Funning
...... E@ Stopping
-5 task 02s

The code for each state of the phase can be written in any of the Logix
languages.

This is the phase state machine. It is almost identical to the S88 state model.

.,

-
I
b

Y

Start Hold
Idle —..-| Runining —..-I Hilding ﬁ|—p-{' Hald \|
J A

| . M -~
Hild
Restart

Resatting T Restartirg }I-I—
4 iy -

1f you have

Stop Abart

Resat . ! .

| Completa) Stopping 1—.-1 Abarting '

S

Reset L Stopped |
y

programmed a S88 compliant STEP 7 phase manager / PLI

routine and wish to convert it to Logix, it may be possible to avoid translation

by using the Logix PhaseManager.

Publication LOGIX-APO08B-EN-P - June 2008

Logix Features that May Not be Familiar to S7 Users ~ Chapter 2

Coordinated System Time
(CST)

Timestamped Inputs

Scheduled OQutputs

Publication LOGIX-APO08B-EN-P - June 2008

S7 has a system clock, which is represented using 32 bits and counts in
milliseconds. Its value can be obtained (and stored) by making a call to the
operating system, which is useful for accurate measurement of time intervals.

Logix use Coordinated System Time which is a 64 bit number that measures
the number of microseconds since the controller was last started. As with S7,
intervals can be measured by making calls to the operating system to get the
CST value. It provides the foundation for clock synchronization for
multi-CPU systems, accurate motion control functionality, scheduled output
switching to 100 us accurate, input event timestamping, scheduled analog
sampling, safety I/O monitoring and communication, motion cam position
calculations, and Wall Clock Time.

Timestamp is a functionality that records a change in input data with a relative
time of when that change occurred. With digital input modules, you can
configure a time stamp for changes of data. You can use the CST timestamp to
compare the relative time between data samples.

This allows the programmer to achieve unparalleled accuracy in linking input
signals to time references for applications such as commonly used in motion
control, without putting a huge burden on the communication and logic
processing systems and related application code.

With Digital Output Modules, you can configure the module to set the outputs
at a scheduled time.

This allows the programmer to achieve unparalleled accuracy in linking
outputs to time references for applications such as axis positions in motion
control, or process control functions, without putting a huge burden on the
communication and logic processing systems and related application code.

65

Chapter2 Logix Features that May Not be Familiar to S7 Users

No Temporary Variables

No Accumulators or
Special Registers needed

66

S7 has a category of variables called Temporaty Variables. Their scope is the
program block in which they are defined and their lifetime is the execution of
the program block in which they are defined.

Logix does not have an equivalent to the Temporary Variable. All variables are
static — they retain their values until changed.

To achieve the functionality typically targeted in S7 applications, use for
example one of the following approaches:

* Use program-scope tags.

* If you are programming an Add-On Instruction, use Local Tags (part of
the Add-On Instruction data).

If you program in STEP 7 Statement List, you will be familiar with the
accumulators and the AR1 and AR2 pointer registers. There are no equivalents
in Logix. All operands ate tags.

To achieve the functionality typically targeted in S7 applications, use for
example one of the following approaches:

* Use program-scope tags.

* If you are programming an Add-On Instruction, use Local Tags (part of
the Add-On Instruction data).

* Consider whether you need Logix equivalents of the S7 accumulators
and special registers. They are there because of the low-level nature of
S7 Statement List, and in a language such as Structured Text, it is
unlikely that they will be needed.

Publication LOGIX-APO08B-EN-P - June 2008

Chapter 3

Conversion of System Software and Standard
Functions

i This chapter lists the more commonly used S7 System Functions, explains how
nwroaucton p Y Yy p
the equivalent is done in Logix and provides several specific examples.

Topic Page
Logix System Functions 68
Copy 68
Date and Time Setting and Reading 69
Read System Time 69
Handling of Interrupts 70
Errors 70
Status — Controller 71
Status — Module 71
Status — for OBs and Tasks 72
Timers 72
Conversion Routines 73
String Handling Routines 73
Examples of System Function Calls 74

The purpose of this chapter is to make you aware of the dedicated instructions
available in Logix, so you do not waste time developing solutions that already
exist.

Publication LOGIX-AP008B-EN-P - June 2008 67

Chapter 3

Conversion of System Software and Standard Functions

Logix System Functions

Copy

In Logix, the equivalent of most S7 System Functions will be the GSV (Get

System Value) and the SSV (Set System Value) instructions. These instructions
access a hierarchy of objects (Classes, Instances and Attributes) built-in to

Logix controllers. If you program GSV and SSV, drop-down menus will guide
you through parameter selection.

SSV Instruction

SSY boal?
Set System Yalue iy
Clazz Mame wWallZlockTime
Instance Mame
Attribute Mame | EEEN
SBLEE Currentalue &
DETAdiustment

LocalDateTime
TimeZone=tring

Once the basics of GSV and SSV have been learned, the new Logix user may
find that access to the operating system is easier than with S7 SFCs.

Used for copying complex data structures - arrays of instances of User Data

Types.

s7

Comment

Logix

Comment

SFC20 BLKMOV

With BLKMOV, the addresses must
be defined at compile time.

COP (instruction)

If COP is used to copy between arrays, the
start of the block (source or destination)
may include an array index to address the
element whose value is evaluated at run
time.

SFC81 UBLKMOV

Uninterruptible version — to ensure
that source data cannot change
during copy.

CPS (instruction)

Uninterruptible version — to ensure that
source data cannot change during copy.

SFC14 DPRD_DAT

If Profibus DP device has
communications data area > 4
bytes the SFC will ensure
consistent reads.

CPS (ControlNet and
Ethernet /IP)

Not required for DeviceNet

SFC15 DPWR_DAT

If Profibus DP device has
communications data area > 4
bytes the SFC will ensure
consistent writes.

CPS (ControlNet and
Ethernet /IP)

Not required for DeviceNet

68

Publication LOGIX-APO08B-EN-P - June 2008

Conversion of System Software and Standard Functions ~ Chapter 3

Date and Time Setting and

Reading

set.

The controllers of both systems have a real-time clock, which can be read or

S7

Comment

Logix

Comment

SFCO SET_CLK

Values passed in an instance of
type DT (DateTime)

SSV
(Set System Value)

SSV Class - WallClockTime
SSV Attribute - DateTime
SSV source - specify element[0] of DINT[7]

SFC1 READ_CLK

Values returned in an instance of
type DT (DateTime)

GSV
(Get System Value)

GSV Class - WallClockTime
GSV Attribute - DateTime
GSV dest — element[0] of DINT[7]

Read System Time

The controllers of both these systems have a system clock, which starts at the
time the controller starts. In the S7 system the time is in milliseconds, in Logix

it is microseconds.

S7

Comment

Logix

Comment

SFC64 TIME_TCK

Returns system time in range
0...231ms

GSV
(Get System Value)

Returns system time in range 0...2.63 ps
GSV Class - CST

GSV Attribute - CurrentValue

GSV dest - specify element[0] of DINT[2]
DINTIO] - lower 32 bits

DINT[1] - upper 32 bits

Publication LOGIX-APO08B-EN-P - June 2008

69

Chapter3 Conversion of System Software and Standard Functions

Handling of Interrupts

system functions.

Interrupts can be enabled and disabled by the user program making calls to

S7 Comment Logix Comment
SFC39 DIS_IRT Disabl_es interrupts handled by a SSV SSV Class - Task
lspecn‘led OB. Interrupt requests are | |nhibits specified task. SSV Instance - Task name
ost. SSV Attribute - InhibitTask
SSV source - DINT variable set to 1
SFC39 EN_IRT Enables interrupts handled by a SSV SSV Class - Task

specified OB

Enables specified task.

SSV Instance - Task name
SSV Attribute - InhibitTask
SSV source - DINT variable set to 0

SFC41 DIS_AIRT

Disables interrupts handled by a
specified OB. Interrupt requests are
delayed.

uiD

Disables interruption of the current task
by a higher priority task

SFC42 EN_AIRT

Enables interrupts handled by a
specified OB. Any interrupts
delayed by SFC41 are executed.

UIE

Enables interrupts of the current task.

Errors These system calls return bit fields in the case of S7, or an integer in the case of
Logix, representing error codes.
§7 Comment Logix Comment
SFC38 READ_ERR Reads and clears error bits. The GSV GSV Class - FaultLog
type of error to be queried canbe | (Use SSV to reset counters | GSV Attribute:

selected with a filtering field.

or faults)

MajorEvents — No of major events
MinorEvents — No of minor events
MajorFaultBits — current major fault
MinorFaultBits — current minor fault
GSV Target — INT or DINT to receive data

70

Publication LOGIX-APO08B-EN-P - June 2008

Conversion of System Software and Standard Functions ~ Chapter 3

Status — Controller

The SFC (§7) and GSV call (Logix) will return data on the controller. Note —

SFC51 requires some learning before it can be used. GSV in this case is more

accessible.

S7

Comment

Logix

Comment

SFC51 RDSYSST

Input parameters specify the class
of information to be read, and
possibly an instance number if
there are several objects.

Output parameters are a pointer to
a list with the returned information,
and the number and size of the
elements in the list.

GSV

Modules with a direct connection:
Examine 'Fault' or 'ChannelFault' member,
if present. Modules with a rack optimized
connection: Examine the 'SlotStatusBits'
member of the adapter input data or the
'Fault' member of the card as above. For
all other cards: Execute GSV:

Class — Module
Instance — ModuleName
Attribute - Entrystatus

Status — Module

The SFC (§7) and GSV call (Logix) will return data on the installed modules.

S7 Comment Logix Comment
SFC51 RDSYSST Input parameters specify the class | GSV GSV Class - Module
of information to be read, and GSV Attribute:

possibly an instance number if
there are several objects.

Output parameters are a pointer to
a list with the returned information,
and the number and size of the
elements in the list.

EntryStatus (relationship of the Module
object to the Module)

FaultCode

Faultinfo

ForceStatus

LEDStatus

Mode (SSV also)

GSV Target — depends on attribute chosen

You can monitor fault information in the Logix tags that are created when the
module is inserted into the I/O Configuration. Similatly with STEP 7, if you
go to the hardware configuration and switch to “Open ONLINE”, fault
information for modules will be displayed.

Publication LOGIX-APO08B-EN-P - June 2008

n

Chapter3 Conversion of System Software and Standard Functions
Status — for 0Bs and Tasks
S7 Comment Logix Comment
0B Header Status data for OBs is stored in GSV/SSV GSV Class - Task
Temporary variables that are GSV instance — Task name
automatically generated by the OB Lo
header. These may be directly GSV Gl
accessed by the OB code, and DisableUpdateQOutputs (at the end of the
transferred to static data areas if Task)
access is required from outside the EnableTimeOut
0B. InhibitTask
See an example below. Instance
LastScanTime (microseconds)
MaxIntervaln (between successive
executions of Task)
OverlapCount (triggered while executing)
Priority
Rate (period in microseconds)
StartTime (value of WallClockTime when
task was last started)
Status (3 status bits)
Watchdog (microseconds)
GSV Source / Target — depends on
attribute chosen
Timers
S7 Comment Logix Comment
SFB4 TON On-delay timer TON (LD) On-delay timer
TONR (ST & FBD)
RTO (LD) Retentive on-delay timer
RTOR (LD & ST)
SFB5 TOF Off-delay timer TOF (LD) Off-delay timer
TOFR (ST & FBD)
SFB3 TP Generates a pulse that will run Bit of the accumulator of a

unconditionally

free-running TON

12

Publication LOGIX-APO08B-EN-P - June 2008

Conversion of System Software and Standard Functions

Chapter 3

Conversion Routines

S7 ‘ Comment Logix Comment
Library functions Instructions
FC16 I_STRNG Integer to string DTOS INT can be used as a source tag instead of
DINT
FC5 DI_STRNG Double integer to string DTOS DINT to string
FC30 R_STRG Real to string RTOS Real to String
FC38 STRG_| String to Integer DTOS
FC37 STRG_DI String to double integer STOD String to DINT
FC39 STRG_R String to real STOR String to real
String Handling Routines
S7 Comment Logix Comment
Library functions Instructions
FC10 EQ_STRNG Compare strings for equality EQU Compare strings for equality
FC13 GE_STRNG compare strings for >= GEQ (LD) compare strings for >=
>=(ST)
FC15 GT_STRNG compare strings for > GRT (LD) compare strings for >
FC19 LE_STRNG compare strings for <= LEQ (LD) compare strings for <=
<=(ST)
FC24 LT_STRNG compare strings for < LES (LD) compare strings for <
<(ST)
FC29 Compare strings for <> NEQ (LD) Compare strings for <>
NE_STRNG <> (ST)
FC21 LEN Length of string .LEN Property of any string instance
FC26 MID returns a middle section of string | MID returns a middle section of string
FC2 CONCAT concatenate two strings CONCAT concatenate two strings
Can be done with FC31 DELETE Delete a section of a string
REPLACE
FC17 INSERT Insert source string in target INSERT Insert source string in target string
string
FC31 REPLACE Replace n characters of target |Use DELETE / INSERT
string with source string
FC11 FIND Find a string in another string FIND Find a string in another string

Publication LOGIX-APO08B-EN-P - June 2008

There is no equivalent in STEP 7 to Logix’s ASCII Serial Port instructions —
neither in the instruction set nor in the function library. These would have to

be programmed in STL if required.

13

Chapter3 Conversion of System Software and Standard Functions

Examples of System These gxamples are intended primarily to illustrate the use of the GSV/SSV
Function Calls msacons

Setting the Clock

STEP 7

This call to SFCO will set the clock. The time and data is entered in
#date_time.

The data and time are stored in 8 bytes following #data_time in BCD format.

Hetwwork 14 : Title:

set the clock to the walue stored in "date time®™

SFCO
Zet System Clock
#hits[10] MOET CLE" #bits[l0]
| —few Bl (x}—|
#date time —FDT BET_VAL —gintwar
0 — year
1 — month
2 —day
3 —hour
4 — minute
5 — second

6 — 2 most significant digits of milliseconds

7 — 1 least significant digit of milliseconds and day of week

74 Publication LOGIX-APO08B-EN-P - June 2008

Conversion of System Software and Standard Functions

Chapter 3

Logix

The date and time values are stored in the seven DINTSs following #date_time.

Set Wiall Clock time

S5V

Publication LOGIX-APO08B-EN-P - June 2008

0- year

1 — month
2 —day

3 — hour

6 — minute
5 —second

6 - microsecond

Set System Value
Clazs Name WallClockTime
Instance Mame
Attribute Mame DateTime
Source date_time

0 &

boal?

The screen shot for Logix shows the data structure associated with GSV and
SSV. Select class from a pull-down menu as follows.

S5

et System W

boal?

Class Mame

o

Instance Mam
Aftribute Mam
Source

Taszk
Faultlog
WallZlockTime

SerialPort

Meszage
DF1

15

Chapter 3

Conversion of System Software and Standard Functions

16

Select Attribute from the pull-down menu, as follows.

SEN boal?
Set System Yalue iy
Clazz Mame wWallZlockTime
Instance Mame
Attribute Mame | =il
Shllice Current'alue A

DT Adjustment

LocalDateTimne
TimeZone=tring —

Finally, select the tag that will be the source (SSV) or destination (GSV) of the

data.

Disabling Interrupts

STEP 7

Hetwwork 2 : Title:

Disable interrupts for the Interrupt Execution (ie Periodic) 0B35S

CaLL "DI3_IRT™
MODE :=B#la#z

OB_NR :=35

FET WAL:=#intWar

SFC39 -— Dizable New Ints

Publication LOGIX-APO08B-EN-P - June 2008

Conversion of System Software and Standard Functions

Chapter 3

Publication LOGIX-APO08B-EN-P - June 2008

Logix

This example shows SSV in Structured Text.

If you type “gsv” then “alt-A” the following parameter selection screen will

pop up.

fi disable task_0.Z=
FEXLL

SSY Instruction - Argumenk LisE

Clazz Mame: I Tazk

Ingtance Mame: Itask_EIEs

Attribute Mame: I | ikt T azk:

Lof Lef Lef Lo

Source:; | dizable

] I Cancel | Apply |

Help |

Once the parameters are entered, click “OK” and the actual parameters will be

completed.

ff disable task 0.Z=
szv(Task,task 0Z=, InhibitTask,disable) ;

n

Chapter3 Conversion of System Software and Standard Functions

Read System Time

STEP 7

read system time

"TIME_TC
K
EN EHNO

FET_WAL -gays tine

Logix

Get System Time

S
Get System Value H—
Clazs Name
Instance Mame
Attribute Mame Currentalue
Dest sys_time
0 &

18 Publication LOGIX-APO08B-EN-P - June 2008

Conversion of System Software and Standard Functions ~ Chapter 3

Get Faults

STEP 7

Hetwork 16 @ Title:

Get programming faults and I/0 access faults

5FC38
Fead Error
Fegizters

"READ ERR"
EN ENO

#prgFault_ [FRGFLT_QU

#accezaFlt |ACCFLT QO FEGFLT_CL

ACCFLT _CL

mask —ERY BET WAL -#intwar

_mask —ERY R —#prgFaults

E —#accFaults

The bit pattern in the input parameters acts as a filter to select the faults that
are to be queried. The faults returned are the masked faults — masking
prevents them stopping the controller or calling a fault OB.

Logix

Get major fault bits

Publication LOGIX-APO08B-EN-P - June 2008

24l
Get System YWalue
Claz= Mame FauttLog
Instance Mame
Attribute Mame MajorFaultBits
ezt major_fautts
0 &

19

Chapter3 Conversion of System Software and Standard Functions

Module Information

The easiest way is to inspect the module device profile tags, which contain
fault/diagnostic information.

1756-1T612 Thermocouple Analog-input Card Tag

Controller Tags - dev_18Aug(controller)

Scope; ﬁ dev_188ug A4 Shawy... Showy Al

Mame fa | Aliaz For | Baze Tag | Data Type |

|+ Local&C AR 17RE_AIE_FloatC:0
= Locald:| 'AB:1?55_#3«IE_EJ_FI0.5I:I:D

+ Local: 4:]. ChannelF aults _ INT

[anal:4:I.ChDFau!t | BOOL

- | Local:4:1.Ch1Fault BOOL

E Local 4:| Chi2F ault . BOOL

i Local: 4:. Chi3F ault | BOOL

B Local 4: . ChaF ault BOOL

B Local: 4:1. ChEF ault _ BOOL

|+t Locak&l ModuleFaults IMT

i Local 4| AnalogGroupF ault _ BOOL

[anal:4:I.InGroupFayIt | BOOL

- | Local 41 Calibrating BOOL

E Local4:1. CalF ault . BOOL

i Local:4:1.ClUndemange | BOOL

B Local:4:| Cl0verange BOOL

|+ Local 4l ChiStatus _ (SINT

fd Local: 4. ChiCalF ault BOOL

i Local: 4. Chil nderrange _ BOOL

[anal:4:I.ChDDverr.§nge | BOOL

- | Local:4:.ChOR ateslarm BOOL

E Local 4:| ChiLdlarm . BOOL

i Local: 4:. ChOH&lam | BOOL

B Local 4:| ChiLLalarm BOOL

JE Local:4:|.ChOHHAlzm BOOL

80 Publication LOGIX-AP008B-EN-P - June 2008

Conversion of System Software and Standard Functions ~ Chapter 3

Another way is to use the GSV instruction to read module objects. The screen
shot below shows how to use GSV to obtain information regarding the

1756-1B16D digital input module.

54

et System Walue
Clazz Mame

Instance Mame
Aftribute Mame

| local_in

Dt =451 140 Configuration

=3 1756 Backplane, 1756-410
[0 [1]1756-LE3 dev_184ug

ﬂ [£] 1756-EMWER M local_ewe
ﬂ [3] 1756-IB1ED local _in

Get Scan Time

STEP 7

This is a screen shot of the Temporary Variables header for OB1.

[Contents OF: Environment|Inketfacel TEMP'

[

|Name Data Type Address |C0mment
= OB1_SCAN_1 Bryte 1.0 1 (Cold restart scan 1 of DB 1), 3 (Scan 2-nof OB 1)
‘= OB1_PRICRITY Bryte 20 Priority of OB Execution
‘= OB1_0B_MUMBR Byte 30 1 (Organization block 1, OB1)
‘= OB1_REZERVED_1 Bryte 4.0 Reserved for system
‘= 0B1_RESERVED_2 Bryte S0 Reserved far system
‘= OB1_PREV_CYCLE It 5.0 Cycle time of previous OB1 scan (milizeconds)
= OB1_MIN_CYCLE Irit 8.0 Minimum cycle time of OB (miliseconds)
= OB1_MAX_CYCLE it 100 Maximum cycle time of OB1 (miliseconds)
‘= OB1_DATE_TIME Diate_And... 120 Date and time OB1 started

Publication LOGIX-APO08B-EN-P - June 2008

#OB1_PREV_CYCLE is the scan time. As a temporary variable, it ceases to

exist when the execution of OB1 is complete. To store the scan time, copy
#OB1_PREV_CYCLE to a static memory location.

81

Chapter3 Conversion of System Software and Standard Functions

Logix
The execution time can be retrieved for each Logix task.

et =can time

EW!

Get System Valus T
Class Mame Taszk
nstance Mame tazk_02s
Afiribute Name LastScanTimes
Diest last_sean_time

0

With S7, you can directly get the scan time for OB1 from
#OB1_PREV_CYCLE. Howevert, for petriodic OBs, there is no equivalent to
#OB1_PREV_CYCLE. To get the execution time for periodic OBs, you will
need to insert calls to SFC64 TIME_TCK at the start and end of the OB, and
subtract the system clock times returned by the SFC.

82 Publication LOGIX-APO08B-EN-P - June 2008

Chapter 4

Introduction

Conversion Code Examples

Conversion of Typical Program Structures

The objective of this section is to demonstrate how some typical programming
tasks in STEP 7 can be performed in RSLogix 5000 software. The discussion is
based mainly on code fragments, but there are also some complete examples.

Topic Page
Conversion Code Examples 83
Other Topics Related to Programming 120
A Larger Example - Control Module 121

There is also some discussion of matters related to programming, such as the
scope and visibility of variables, and the scheduling of code sections.

These examples show conversion code.

Ladder Logic Translation

This section describes a few examples of comparison between STEP 7 LAD
and Logix LD.

Writing to a Coil

STEP 7

Output to a coil

Publication LOGIX-AP008B-EN-P - June 2008

#hits[0] #hits[1]
| | o |
1 W 1
LOGIX
"Output to & Coil"
hit=[0] hits{1]
e
e

83

84

Chapter 4

Conversion of Typical Program Structures

Set and Reset
STEP 7
Hetwork 3 : Title:
set bit
#hits[2] #hits[5]
| | .fs‘. |
1 b |
Hetwork 4 : Title:
reset bit
#hits[3] #hits[5]
| | .’R‘. |
11 L]]
LOGIX
Zet (Latch) Bit
hit=[2] hit=[5]
I @
Reszet (Unlatch) Bit
hits[3] hit=[5]
| (@

Publication LOGIX-APO08B-EN-P - June 2008

Conversion of Typical Program Structures ~ Chapter 4

Test for Greater Than

STEP 7

test for greater than

ChiF =D #hits[7]

N]
L |

#dint=s[0] 4 IN1

#dints[1] qINZ

LOGIX
Test for grester than
GRT kit=[7]
— | Greater Than [&=6))

Source & dintz[0]

1 &
Source B dintz[1]

0+

As before, use the CMP instruction if the expression is more complex than just comparing
two numbers.

Publication LOGIX-APO08B-EN-P - June 2008 85

Chapter4 Conversion of Typical Program Structures

On Timer Delay

STEP 7

On delay timer

DB2
"Instance_
SFE4”

5FBA
Generate

an On

Delay

TN
EN EHNO

#hits[5]—{IN Q-#hita[9]

T#305—FT ET-gexp time

LOGIX

on-delay timer

bit=[&] Tih hit=[9]
Il Timer Cn Delay

Timer tiner1

Preset 30 & KBRH—

ACCUm 0

86 Publication LOGIX-AP008B-EN-P - June 2008

Conversion of Typical Program Structures

Chapter 4

Call to User Function

#hita[10]

STEP7
user-function call
FC115
) TATRING
#bit=[10] T REALL™
| } EN™ ENO
P#DEL . DEXT
0.0
"lrata FE1"
.Strng —str walue —gstrisReal
32 —{len
LOGIX

enakle_ramper

it
1R} |

Ramper Test
To Start the Ramper zet "enable” parameter
To pause the Ramper reset "ramper_test. enabled”
To resume set "ramper_test.enabled”
Setting "enable” hoth starts and resets the ramper

||
I

ramper enakled
ramper_test enakled

Publication LOGIX-APO08B-EN-P - June 2008

A0|_RAMPEFR
ramg_val
ramger
recalc

enahle

A _RAMPER:

backing_ramg |:|
ramped_value
ramper_test
04

enakle_ramper

87

Chapter 4

Conversion of Typical Program Structures

88

Boolean Network

STEP 7

boolean network

#hits[0] #hits[3] #hits[11]
| | (—
#hita[1l] #hits[2] #hita[4]
| | /1 | |
#bhits[2]
11
LOGIX
Boolean Metwork
bit=[0] bit={3] bit=[11]
I I O
bit=[1] bits[2] bitz[4]
I o I
bit=]2]
/H'_

There is sufficient similarity between STEP 7 LAD and Logix LD to make
translation at the level of routines fairly straightforward.

Publication LOGIX-APO08B-EN-P - June 2008

Conversion of Typical Program Structures

Chapter 4

The Logix LD Editor

There are no less than seven ways to select LD instructions. Two methods
which are fairly similar to the way it is done in STEP 7 are described below.

You can select from a palette above the LD worksheet.

A Al] A]| o] o] M
4|>|\ Favorites A Add-On A Slarms A Bt A TimeriCounter A Ir
3| 5l e e
Boaolean Metwark .
haoold haool3 haool?
I I O—
haolt bom boo}d
| I
haool2

If you type Alt+Insert, this selection pop-up will appear.

: Add Ladder Element x|

Ladder Element. ([T Instruction Help »» |

MHame Description
&g
- Branch
+ Branch Lewvel [MB]
Alarms
Bit
Tirner/ Counter
|npLat/ O utput
Carmpare
Cormpute/t ath
tdoveLogical

¥ Show Language Elements By Groups oK
Cancel

Mew Add-On Instruction. . | Help

Pk,

When configuring instructions, pull-down menus are available to allow you to

select the tag to be entered.

Boolean Metwork

hoall hool3

Publication LOGIX-APO08B-EN-P - June 2008

|Data Type |Des...

BOCL

L | |
! f | Mame
kool hool4 hools hoal?
| I boois

ﬂ [F-Compactlogiz_1_consume

BOOL

UDT_STEP_=... Data...

hool2
| ﬂ [H-entrolLogiz_1_produce UDT_STEP_S... Data...
ctr CINT -
A | LController

89

Chapter4 Conversion of Typical Program Structures

Jumps and Decision Making

STEP 7 - Conventional Jump Sequence

The following example task is explained in the Network comment. Two S7
versions are shown because both are often used.

m: Multi-way selection

if #input iz 5 set #rarget Lo &
else if #input is 6 set #target to 10
else if #input iz 7 set #target to 1o

else zet #input to 0

_o0L:

_onz:

_o0a: L

end: NOFP

90

#input
5

ool

g
#rarget

end

#input
&

_nnz

10
grarget

end

#input
7

_nn3

1a
grarget

end

]
#target

]

The value of #input is compatred with the set of constants until comparison is

found. Then the action is performed, and comparison ceases. A default action

is executed if #input does not compare with any value in the set.

Publication LOGIX-APO08B-EN-P - June 2008

Conversion of Typical Program Structures ~ Chapter 4

STEP 7 - Jump List

In this example the task is the same, but a Jump List is used. This is similar to a
microprocessor jump table, and transfers execution to a label depending on
the value of a variable.

Hetwork 2 : Title:

if #input is 5 set #target to 8
else if #input is 6 set #target to 10
else if #input is 7 set #target to 16

else set #inpur to 0O

L #inpur

L 5

S

JL rng

Ju ds

Ju di&

Ju d7
raeg: L 1]

T #rarget

au cont
das: L g

T #target

Ju cont
dg: L 10

T #target

Ju cont
a7: L 16

T #target

cont: NOP 1]

This is more readable than the conventional jump sequence, and is more
efficient because only the code at the target label is executed.

Publication LOGIX-APO08B-EN-P - June 2008 91

Chapter4 Conversion of Typical Program Structures

Logix - Ladder Logic

This shows multi-way choice using LD.

Mutti-weay choice wsing LD
=l A
— | Equal Move —
Source & walue Source g
0 &
Source B 5 Dest target1
0 &
Ecild A
| Equal Movve —
Source A Source 10
Source B Dest target1
0 &
Eal ——do
— | Equal Move —
Source & walie Source 16
0 &
Source B 7 Dest targett
0 &
HE HEC HEC ——do
— | kot Equal —— | Mot Equal F— | Mot Equal Move —
Source & walie Source A value Source A walue Source 1]
0 0+ 0%
Source B 5 Source B G Source B 7 Dest targett
0 &

92 Publication LOGIX-APO08B-EN-P - June 2008

Conversion of Typical Program Structures ~ Chapter 4

Publication LOGIX-APO08B-EN-P - June 2008

Logix - Structured Text If... Then. . .Else

Anyone familiar with a programming language in the Basic/Pascal/C families
will understand this without difficulty.

SF malti-way choice using Structured Text

if {walue = &) then target = 2;
2l=zif f(value = &) then target :-= 10;
elsif {(walus = 7) then target = 1&;
elze target :-= 0;

end if;

Brackets around the “if” condition are not compulsory.
Logix Structured Text CASE statement

This is another variant in ST that does the same task. It is sufficiently compact
and clean that there is little need for additional comment.

A malti-way choice using Structured Text EASﬂ

case walue of

E: target = &;
5 target = 10;
Vo target = l16;

else target :=0;
end case;

All solutions work but this is the preferred Logix solution. It is compact and
sufficiently clear that no further documentation is needed.

93

Chapter 4

Conversion of Typical Program Structures

94

Arrays

STEP 7 and Logix both allow arrays of simple or complex objects to be
created in memory. Logix has high-level support for accessing arrays. In STEP
7 however, low-level programming is needed.

STEP 7 Array Creation

The following screen shot shows two arrays that have been created in an
instance data block. Simple_array is an array of 10 elements. UDT_array is an
array of 10 structures of type test_UDT1, where test_UDT1 is a user data type
containing a few other types, not shown.

Conkents OF: ‘EnvironmentiInterfacelSTAT
EI--@ Interface |Name Data Type Addrezs Initial % alue
A N 2 [input
ddk OUT = target It a0 i
--:l]- IN_oUT e=p simple_array |Arrayv (0.9, 100
- STAT W UDT_array Srray [0.9.. 500
- TEMP @ state Init 170.0 0
B errar Bioal 172.0 FALSE
Logix Array Creation

This is exactly the same in Logix.

Scope: ‘E&prugram_[@s j Show. .. Show Al

M ame Fil | Aliaz For | Baze Tag | Data Type Style D ezcription | |
| |[Htarget DIMT Decimal
| |[Hvalue DINT Decimal
= simple_array DIMNT[10] Decimal
P +-UDT_amay test_UDT1[10]
+-index DIMT Decimal

Array Declaration Syntax

STEP 7 uses the declaration syntax ARRAY[0...15] OF REAL. Logix uses
REAL[15].

STEP 7 has a special syntax for strings. STRING[32] is a 32 character string in

STEP 7 whereas in Logix STRINGJ32] is an array of thirty two strings, each
one containing 82 characters.

Publication LOGIX-APO08B-EN-P - June 2008

Conversion of Typical Program Structures ~ Chapter 4

Array Access in STEP 7

This example is to execute a simple task on the two arrays simple_array|[] and
UDT_array]]. The task is described in the network comment.

In STEP 7, it is not possible to access arrays using the normal array[] notation.
Instead you have to use low-level operations with pointers. In the fragment
below, a function “GET_INDEXED_REFERENCE” makes the task much
easier by returning a pointer to the array element that is to be accessed.

Hetwork 3 : Title:

array operations
if (2imple array[£] = zimple array[5]) then
DT _array[d].booleanl := 1:

else
DT _array[&8].booleanl == 0;
end if;
A1, compare simple_array[Z] with simple_arraw[3]
CALL "GET_INDEXED FEFEFENCE™ FCl111
refarray :="Data_test".zimple_array F#DEL1.DEX10.0
index =2
bytelncr :=4
startIndex: =FLL3E
retWal t=fprrl Bl
CALL "GET_INDEXED FEFEFENCE™ FCl111
refAdrray :="Data_test".simple_array FP#DEL1.DEX10.0
index =5
bytelncr :=4
startIindex: =FLL3E
retWal t=fprrs
0PN "Data_test” DEL
L DID [#ptrl]
L DID [#ptrz]
==D
= #conpare
#¢ 2. get pointer to UDT_array
CaALL "GET_INDEXED REFERENCE™ FC111
refirray :="Data test".UDT array P#DEL.DEX44.0
index =3
bytelncr :=12 T
startIndex:=FALSE
retVal i=#ptrl
L #prrl
LAR1
/4 3. set or reset the bit

F #oompare
= DIx [4R1,P#0.0]

Publication LOGIX-APO08B-EN-P - June 2008

In this case, the actual Logix Structure Text code was used as the Network
comment, demonstrating just how intuitive Logix code is.

95

Chapter4 Conversion of Typical Program Structures

STEP 7 - Looping Through Array Elements

The objective in this example is to clear the float field in each structure in
UDT _array|]. This is not difficult, but confidence in using pointers is cleatly
required.

Array Operations

Clear all float elements at UDT offset P#6.0 in array UDT array

f# transfer pointer to UDT _array to ARL

L P##UDT array
LARL
/7 initialise counter
L 0
T #oLr

f4 end if gctr = 9

loop: L #oLr
L a
=T
JC endz
/7 clear the float field at offset p#6.0
L 0.000000e+000
T DID [AR1,P#6.0]

/7 increment ARl by si=ze of the TDT
+4R1 P#1Z.0
/7 increment counter

L #ctr

INC 1

T #oLr
/¢ loop back

Ju loop

endz: NOP 0

96 Publication LOGIX-AP008B-EN-P - June 2008

Conversion of Typical Program Structures

Chapter 4

Logix - Array Operations in Structured Text

The following ST fragment performs the tasks described in the preceding two

sections.

S/ array access in BT

if (simple array[Z] = =simple_ array[5]) then
UDT_array[2].booleanl -= 1;

else
UDT_array[2].booleanl -= 0;

end if;

FF clearing array elements

if (simple_array[0] = &) then
index = 0;
while (index == 2 do
TDT_array[index].reall = 0.0;
index := index + 1;
end while:
end if;

No additional comments are needed to describe how this works.

If you find yourself switching Boolean variables with if...then...else
statements, consider writing a Boolean equation instead:

fF array access in 5T
UDT_array[8].-booleanl = simple arrayl[2] = simple array[S]:
Logix -Array Operations in Ladder Diagram

The examples of the previous section can be written in LD using the CMP
(Compare) instruction as follows.

Simple array operation

— | Compare

Expression simple_array[2] = simple_array[5)]

P LDT _array[S].hoolean

Publication LOGIX-APO08B-EN-P - June 2008

97

Chapter 4

Conversion of Typical Program Structures

98

The second one (clearing the real field in the array of UDTs) can be done
cither of these ways.

Clear the fisld "real1" in each element of "UDT _array"

loop Eal L EG it
—{[LBL }— | Ecqusl — | Less Than or Egl (&==H) Mave
Source & simple_array[0] Source & index Source on
0 % 0 &
Source B 5 Source B 9 Dest UDT_array(index].real
oo
L A0 [[ala74}
- | e — i —
Source & index
0 &
Source B 1
Dest index
0«
Clear the field "reall " in each element of "UDT _array™
ECill FaLctriod FaL
— | Equal FES File: &rithLogical KEN——
Source & simple_array([0] Carntral FALctrio
5« Length 10 & KRR
Source B 5 Position 9%
Miocle: ALL | KER—
Dest UDT_array[FALctrl01 POS] reall
0.0
Expression o

The first approach to clearing the array elements is a translation from While
Loop of the ST code. The second uses the advanced FAL instruction for array
operations.

Publication LOGIX-APO08B-EN-P - June 2008

Conversion of Typical Program Structures ~ Chapter 4

User Data Types

Configuring and using User Data Types (UDTs) in STEP 7 and Logix is very

similar.

Below is a UDT in STEP 7.

. UDT1 -- Conversion_examples\SIMATIC 400 Station\CPU414-2DP(1)

fuldress |Hame Type Initial walue |[Comment
0. STRUCT

+0.0| |booleanl EOOL FALSE
+0.1| |boolean2 EOOL FALSE
+2.0| |dintl DINT L#0
+6.0| |reall FEAL 0.000000e+000

+10.0| (spare WORD W#LE#D

=1Z2.0 END STRUCT

Below is a UDT in Logix.

M arne: o
Description:
Members: [rata Type Size: 16 byte(z)
M ame |Data Type |Sty|e |Descriptiu:-n |
booleand BOOL Drecimal
boolean? BOOL Decimal
| dintt DINT Decimal
| reall REAL Flaat
Fpare DIMT Decimal
e |
o _J

In both systems, UDTs can be used to declate and define variables.

Publication LOGIX-APO08B-EN-P - June 2008 99

Chapter 4

Conversion of Typical Program Structures

100

Here is a declaration involving a UDT in STEP 7.

Contents OF: ‘EnvironmentiInterfacelSTAT

- @ Interface - |Name Data Type Address Initial %alue
L In = |input Irt .0]
T ouT ‘= target Irt a.0 0
+-a1d IN_OUT ef simple_array [Areay [0.9] OF Dirt 100
R S TAT v || DT array Array [0.8]OfF UDT 1 500
Here is a declaration involving a UDT in Logix.
M ame Fil | Aliaz For | Baze Tag | Data Type Style
Lirnit_Switch_1 Local:3:1.Data.l Local:3:0.0ata. 0 BOOL Decimal
+ Lozal:3:C AB:1756_DI:C:0
+| Local: 2 AB:17EE_DI:0
—|-carveyor_T1 ot
cotveyor_1. boolean BOOL Decimal
conveyor_1.boolean: BOOL Decimal
+ conveyor_1.dintl DIMT Decimal
cohveyar_1.reall REAL Flaat
+ conveyor_1.spare DIMT Decimal
One minor difference between the two systems is as follows:
In STEP 7 you can declare a variable of type “struct”.
Contents OF: 'EnvironmentInterfacel STAT'
= @ Interface |Name Data Type |Address Initial S alue
I 'E target Irt a.0 0
= ouT o simple_arrsy [Sreay [0..9] Of Dint 10.0
+-20k IN_QUT tgj LCT_array Array [0.9] Of UDT 1 S0
+ {8 STAT = state Irt 1700 0
+-2 TEMP ‘= error Boal 1720 FALSE
‘& transitiond Bool 1721 FALSE
‘&= transitiont 2 Bool 1722 FALSE
Firsk Record ‘= transitiond 3 Boal 1723 FALSE
‘B transition24 Bool 172.4 FALSE
‘& transitionds Bool 1725 FALSE
‘= transition3 Boal 1726 FALSE
‘= =tr String[46] "

Notice the entry “table” of type Struct. Inside “table” can be a collection
(ordered or unordered) of any combination of types.

Publication LOGIX-APO08B-EN-P - June 2008

Conversion of Typical Program Structures ~ Chapter 4

In Logix, this would be done by defining “Struct” as a UDT containing the
desired data structure and then declaring “table” as type Struct.

M ame [| Aliaz For | Baze Tag | Data Type | Style

.| Limit_Switch 1 Local 3:1.Data0 Lozal:3:l.Data 0 BOOL Decimal
__|+locakzC AB:1756_DI:C:0
|+ Local3: AB:A7RE_DID
= convepar_1 10T
L caonveyar_1. baalean BOOL Decirmal
L conveyor_1.boolean? BOOL Drecimal
| Heonveyor_1.dintl DIMNT Decimal
L conveyor_1.reall REAL Float
|t conveyor_1.spare DIMT Decimal
___|I=I-table Shruct
L table.status_bitl BOOL Decimal
- table. status_bit2 BOOL Decimal
L table status_hbit3 BOOL Decirmal

+| table. dwell_timer1 TIMER

+/ table.dwell_timer2 TIMER
L table.zpeed REAL Float

Publication LOGIX-APO08B-EN-P - June 2008 101

Chapter 4

Conversion of Typical Program Structures

102

Pointers and Arrays

A STEP 7 program can have pointers to any data object. Indirect access to
data blocks is also allowed but there are no pointers to functions (except in a
restricted way by the JL. (Jump List) instruction). The data pointer is unusual in
that it is a pointer to a bit. Hence its value is eight times that of a normal
pointer to a byte. This reflects the importance of bits in control systems
programming,

In Logix there are no pointers. Arrays perform the same function as pointers,
but are simpler and safer.

Will the S7 programmer be able to do a full range of tasks in Logix without
pointers? In computer programming, pointers to data are used principally for
three purposes:

* Operations on sequentially ordered data items (arrays of objects, strings).
* Allocating, accessing and deleting dynamically allocated objects.

* Passing references to objects as parameters in function calls.

In Logix, the first purpose is covered by arrays. The second purpose is not
relevant in control software because we do not have dynamically allocated
objects. The third is covered by “inout” parameters in both STEP 7 function
blocks and Logix Add-On Instructions.

It is concluded therefore that the absence of explicit pointers is not a limitation
for Logix programmers. STEP 7 programmers should also discover that
coding using arrays can be more quickly performed in Structured Text using
arrays than in STL using pointers.

Publication LOGIX-APO08B-EN-P - June 2008

Conversion of Typical Program Structures

Chapter 4

Publication LOGIX-APO08B-EN-P - June 2008

State Machine

The State Machine is an important construct in control systems software
because it greatly simplifies the task of programming sequential control.

Stateld

Transition01

Statel

Transition12
Transition31

Stated

Stated Transitio

n13

Transition24

Stated Transitiond3

103

Chapter 4

Conversion of Typical Program Structures

104

STEP 7 State Machine

STEP 7 offers a graphical Sequential Function Chart as an optional extra to
the basic application. If the graphical SFC is not available, Statement List will

do the job
state machine
L #state
JL rhgl
Ju st0
Ju stl
Ju st
riogl: SET
3 #error
BEU
sth: L 1
Y #transitiondl
JC next
Ja ovE
atl: L 2
iy #transitionls
JC next
L 3
iy #transitionl3
JC next
Ja ovE
stZ: L 4
'y #transitionzZ4d
JC next
J1T ovE
3t3: L]
Y #transitionil
JC next
JI ovE
atd: L 3
o #transitionds
JC next
JI ovE
next: T #aztate
owe: HNOP]

Publication LOGIX-APO08B-EN-P - June 2008

Conversion of Typical Program Structures ~ Chapter 4

Publication LOGIX-APO08B-EN-P - June 2008

The variable #state contains the state number. The Jump List instruction
causes execution to jump to the label relevant to the value of #state. If a
transition condition from that state is True, the new state value is loaded in the
accumulator and execution jumps to label “next”, where the new state number
is transferred to variable #state.

Logix State Machine in Structured Text
Here is the same state machine in Structured Text, using the CASE statement.

As with the other ST examples, it would be hard to write a clearer description
than the code itself.

Ji implementation of 5tate Machine using CASE in BT

case state machine.state of

0: if state machine. transitionfl then
state_machine.state -= 1;
end if;
1l: 1if state machine transitionlsZ then
state machine.state = Z;
elsif state machine.transitionls then
state machine.state -= 3;
end if;
Z: 1if state machine transitionZd then
state _machine.state "= 4;
end if;
3: if state machine. transition3l then
state_machine.state -= 1;
end if;
d4: 1if state machine transitionds then
state machine. state -= 3;
end if;

end case;

105

Chapter4 Conversion of Typical Program Structures

Logix State Machine in Sequential Function Chart

Logix provides s graphical SFC as one of its standard suite of languages.
Shown below is the state machine in SFC.

Implementation of State Machine Using SFC chart

o

I

Stated

I

_I state_machine.transition01
1

]
Example of State Machine using SFC

NS w

_I state_machine.transition12 I state_machine transition13
1 1

= [m]

state2

I state_machine transitionz24

I state_machine transitiond3
1

_I state_machine. transitionz1
1

106 Publication LOGIX-APO08B-EN-P - June 2008

Conversion of Typical Program Structures ~ Chapter 4

State Machine in Ladder Diagram

The screen shot below shows how the state machine can be implemented in

LD.
State 0
m state_machine transition01 hfiCa
— | Equal | Move —
Source A state_machine state Source 1
0 &
Source B u] Dest state_machine state
0 &
State 1
=] state_machine transitiond 2 ful C1%
— | Equal Il Move
Source & state_machine state Source 2
0=
Source B 1 Deszt atate_machine state
0 #
state_machine transitiond 3 Pl
Il tMove
Source 3
Dest =tate_machine state
0 #
State 2
Ecil state_machine transition24 Y Ta]
— | Equal Il Mo —
Source A state machine state Source 4
0
Source B 2 Dest state_machine state
0 &
state 3
Ecill state_machine transition31 A,
— | Equal | More —
Source & statemachine state Source 1
0 &
Source B 3 Dest state_machine state
0 #
State 4
EQil state_machine transitiond3 PO
— | Equal [} Move —
Source & state_machine state Source 3
0=
Source B 4 Dest state_machine state
0

Publication LOGIX-APO08B-EN-P - June 2008 107

Chapter 4

Conversion of Typical Program Structures

108

Strings

String Definition in STEP 7

-0 TN_OUT

W STAT

-4 TEMP
First Record

Conkents OF: ‘EnvironmentiInkerfacelSTAT
[Mame Data Type | 4cddress Inttial %alue
= transition 2 Bioal 1722 FALSE
= transition 3 Bioal 1723 FALSE
= transition24 Bioal 1724 FALSE
= transitiond3 Biool 1725 FALSE
= transition3 Biool 1726 FALSE
; String[46] 'Thiz i= an example string'

|2 tahle Struct 2220

The data header shows how strings are defined. The length of the string is
entered in brackets [| after the String data type. The initial value of the string is
typed in the “Initial Value” column.

It is possible to create an array of strings, but each could not be given an initial
value. An alternative definition to avoid this problem is shown by the entry
“table” in the data header. ““Table” is a structure. The contents of the structure,
not shown, are five instances of string[46], and each has been given an initial
value.

String Definition in Logix

The extract from the tag configuration table below shows how string are
defined in Logix.

+-LUDT_amay tezt_LIDT(10]
+|-string_of_S2char STRIMG

v

— i AT

CTOORLT AN

Publication LOGIX-APO08B-EN-P - June 2008

Conversion of Typical Program Structures ~ Chapter 4

If you wish to create a string of a different length than the 82-character default,
right-click on “strings” in your project tree (as shown below).

clr
FaL
IC5

itde

-5 Data Types

-8 User-Defined
W AMALOGLE_IN
| ARRAY_CF _CHAR_48
MOTOR.
o] PHASE_IBATCH
state_machine
STEP_SEQUENCE
kest LIDT +|-10°

VALYE +-ztrin

|| [+=trin

imE

20U

+ | |+ |

zhah

E3lEslEslEs s s e

=5

Mew String Twpe. ..

i r

I_‘al\ﬁ_%ﬁ

Lo R R R L R oy) e

o] &OI_PLI_IBATCH
o] AOI_555_SEQUENMCER_64
mo] ACOT_WALYE_=SEMSOR,

3izz/E3)Es)Es)Es)

Then configure the properties as below.

E S5TRIMG_43

Dezcrption:

waximum Characters; |48 j

wembers: Data Type Size: 52 byte(z]

M arne | Data Type Style Drezcription
LEM DIMT Decimal

CATA SIMTI42] ASCI

Having done this, you can define instances of your new type.

+|-EING_0I_5LCnar S LHING
+|-ztririg_of_48char STRIMNG_48

Publication LOGIX-APO08B-EN-P - June 2008 109

Chapter 4

Conversion of Typical Program Structures

110

With instances of type STRING or STRING_48, there is a LEN field that
automatically updates when a string constant is entered or when the string is
manipulated by ASCII or STRING instructions.

STEP 7 Temporary Variables

One of the categories of variable in STEP 7 is the Temporary variable. They
can be created in any Organization Block, Function or Function Block.

Temporary variables are used for local, temporary storage of intermediate
values, and for pointers. They only exist while their block is executing, and
their values are lost when the block terminates.

Logix does not have Temporary variables. All storage is static - that is, values
are retained between code executions.

If you use Add-On Instructions, you will notice that Local variables can be
created for an Add-On Instruction. These variables can be used in the same
way as temporary variables.

Functions

If the STEP 7 programmer uses Statement List, he might have to develop low
- level routines that are time consuming to write and require careful testing.
Functions are important because the development of such routines need be
done only once, and having been done, both the originator of the function and
other programmers can do the same thing in a fraction of the time.

This section discusses how functions can be implemented in Logix.
Function as Add-On Instruction in Logix

STEP 7 Functions and Function Blocks are similar in their structure to the
Logix Add-On Instruction. The Add-On Instruction has the same types of
parameters as the FB (Input, Output and InOut) and it has its own data area.
Once coded and tested, an Add-On Instruction can be used from anywhere in
a program, and is sufficiently self-contained to be exported to other projects
or placed in a code library.

Publication LOGIX-APO08B-EN-P - June 2008

Conversion of Typical Program Structures ~ Chapter 4

Publication LOGIX-APO08B-EN-P - June 2008

New Add-On Instruction x|
MName: Nesw_A0I oK, |
Drescription: Dezcnption for a neve A0 ﬂ Cancel |

Help |
Type: E ;‘.Eitrl_n::tl.ue':l Text
bdzjar helirar Extended Test
Revizian: | 1 j IEI ﬁ I
Revizion Mote: =

Example - a Ramp Function

This example takes a real variable and ramps it linearly from its current value to
a new value at a specified rate.

Go to the Add-On Instructions branch of your project tree and right-click
Add-On Instruction.

o 11
5 e
: g} A0 Mew fdd-Cn Inskruckion, ..

-[35} A0l Irnport Add-On Instruction, ..
-5 AoT_|
(g A0L Zuk kel
-[a a1 Copy Tyl
-G AOLI R Paste Ctrl+y
(5 A0T_treere—eoerrr

EI‘ETJ Data Types

Elﬁ IUser-Defined

L test_UDT

This form appears.

Yendaor

[T Open Logic Foutine

¥ Open Definition

Enter the name of the Add-On Instruction and specify the language its code
section will be written in.

m

Chapter 4

Conversion of Typical Program Structures

& Add-0n Instruction Definition - ADI_RAMPER ¥1.0

Choose the Parameters tab.

General Parameters | Local Tags| ScanModes| Change Histu:ur_l,ll Helpl

=10l x|

Mame Uzage |Data Tupe Defauilt Style Req|*is |Des
Enableln [t BOOL 1Decimal | T | [T |Ena
E nable0ut COutput [BOOL Upecimal | T | T |Ena
ramp_wal InCut REAL Float ¥ ¥
[F-ramper InOut |UDT_RAMPER VW~
recalc [t REAL 0.0|Float F | peEri
enable InOut |BOOL Decimal | W | ¥
s |
1] | na
Move Up | b ove Diawn
Logic | [ata Type Size: 8 byte [z] Ok I Canicel ARl

Help l
e

As in STEP 7, Input parameters are values from the program to the Add-On
Instruction, Output parameters are values from the Add-On Instruction to the

program and InOut parameters are for variables that will be modified by the
Add-On Instruction. If you have any data structures, choose the InOut type
anyway because they are passed by reference and this is more efficient.

tembers: Data Type Size: 28 byte(z)
Mame Data Type Style Dezcrption

iritial_output REAL Float saved initial output
increment REAL Float calculated increment
H.&'.MP_H.&.TE_.&.BS REAL Float per zecand - [SEt a|wa_|r|3 +"\"E]
RaMP_TARGET REAL Float final value - [set]
change REAL Flaat calculated change over ramp
counter DINT Decimal intermal colnter
CDlTII:IlEtE BOOL Drecimal rarmninn 2 camnlete

112

Publication LOGIX-APO08B-EN-P - June 2008

Conversion of Typical Program Structures ~ Chapter 4

In the project tree for AOI_RAMPER, there is a logic section.

=65 ACI_RAMPER

Parameters and Local Tags
i ey Logic

I?Il:f'l ACT 585 SECUEMCER 64

Open it to see the code for this Add-On Instruction.

fF Bamps a real wariable from its current waluse to a new walue at a
f# specified rate.
ff Parameters:
i ramp_wal - wariahle to be ramped
£ ramper = instance of UDT UDT_RAMPEL
rF recalc - code recalculation period (=)
i enahle - =start signal
F4 To use - set the target wvalue in ramper.PRAMP TARGET AES
s - set the rawmp rate in rawper. FAMP RATE ABSZ
rF - Lo Btart the Ramper set "enahle" parameter
rF - Lo pause the Ramper reset "ramper. enabled"
s - Lo resume set "ramper.enabled"
rF - zsetting "enahle" both starts and resets the ramper
fi on completion, the UDT field "complete" is set and the TDLT field
ff "enabled" is reset
f# when enahle is set, initialise
if (enable & (enable xor ramper._ enable)] then
ramper.initial output = ramp wval;
ramper.change = ramper.PAMP TARGET - ramp wal;
ramper.increment = rawmpetr.change § abs(ramper.chatnge)
* ramper.PANP RATE AEE * recalc;
ramper. counter = 0O;
ramper. complete = 0;
enable = 0;
ramper. enahled = 1;
end if;
ramper. enable = enable;
fi ramp calculations
if (ramper.enahled) then
ramp wal = ramper.initial output + (ramper.counter
* ramper.increment) ;
ramper.counter = ramper.counter + 1;
if {absirawper.counter * ramper.increment)
= absi(ramper.change)) then
ramp wal = ramper. RPAMP TARGET:
ramper. complete = 1;
ramper.enabled = 0;
ernd if;
end if;

Publication LOGIX-APO08B-EN-P - June 2008 13

Chapter 4

Conversion of Typical Program Structures

114

enakble_ramper

The Add-On Instruction can be called from any routine.

Famper Test
To Start the Ramper set "enable” parameter
To pause the Ramper reset "ramper_test enabled”
To resume zet "ramper _test enabled"
Setting "enable" baoth starts and resets the ramper

ramper enabled
ramper_test.enabled

A00_RAMPER
A0_RAMPER backing_ramp [.|
ramp_val ramped_wvalue
ramgper ramper_test
recalc 0.4
enakle enable_ramper

Note that with Add-On Instructions, you will need to create a tag of type
Add-On Instruction in a data area that is visible to the routine. This is called a
backing tag.

Before you write an Add-On Instruction, check through the Instruction Help
in RSLogix 5000 software. You might find that there is an existing instruction
that will do the job. The following section will illustrate this.

Block Copy, COP and CPS

In STEP 7, it is common to use the system function SFC20 “BLKMOV” to
copy a block of data between locations.

I
CALL "BLEMOV"
SRCELE :="Data EM1".steplsgs.steps
PET ViL:=#intVar
DITELE :="Data EM1".actualitep

The instruction copies the string from the fifth location in an array of strings
to a destination string.

Often we want to copy the i-th element from an array, where “i”
the program executes. “BLIKMOV” cannot do this.

can vary as

Publication LOGIX-APO08B-EN-P - June 2008

Conversion of Typical Program Structures ~ Chapter 4

The STEP 7 programmer would write a function to meet his requitement.

£/ copy step humber dezscriptor to ICADA display area [(EM faceplate)
CALL "INDEXED_COPY™
index3ource :="Data EMz".EM]l.stepiunber

sourceRef :="Data_EM1".stepMsgs

indexDest =1

destRef :="Data_EM1".actualitep
recordlLength: =58 FF 3E bytes

In this case, the copy is between two arrays and the indexes are defined by
indexSource and indexDest.

In Logix, the COP built-in instruction will save all the work.

trigoer [al3] trigoer
— Copy File (—
Source tablefindex_in]
Dest taroet
Length tablefindex_in].LEN

Because the source and destination specifications can include variable array
indexes, COP will do the job. It is the equivalent of “INDEXED_COPY”.

The CPS instruction is the same as COP but with one difference.

trigoer PS5 trigoer
— Synchronous Copy File
Saurce tablefindex_in]
Dest target
Length tablefindex_in].LER

The instruction cannot be interrupted. Therefore, the source and destination
data will remain constant throughout its execution. If you wish to move data
that could change, use CPS.

Examples are:

* copying input data to a buffer, from where the program will operate on
the data.

* copying consumed tags to a buffer, from where the program will operate
on the data.

Publication LOGIX-APO08B-EN-P - June 2008 115

Chapter4 Conversion of Typical Program Structures

Mathematical Expressions

This section will describe how the S7 programmer can perform mathematical
computations in Logix. An example will be used - the expression “v(cos(x)"2
+ sin(x)"2)”. The result of this expression is always exactly 1, so it's easy to
check that you are getting the correct answer.

STEP7-STL

Math code in STEP 7 STL is efficient, but perhaps not too clear for someone
who is unfamiliar with STL.

calculate:

(SIN(x)*2 + COS(x)*2) ~0.5

L #x

SIN

S0R

L #x

cos

S0R

+E

S0RT

T #resultc

116 Publication LOGIX-APO08B-EN-P - June 2008

Conversion of Typical Program Structures ~ Chapter 4
STEP 7 - LAD
Math evaluation in LAD follows a conventional pattern of combining
functions.
calculate:
(SIN{x)*2 + COS(x)*2) 0.5
SIN SR
EN ENO EN ENO
#x—IN OUT —#templ #tenpl -IN OUT - #templ
cos SR
EN ENO EN ENO
g | IN 00T ~#tenpz #renps - IN 00T | # tenpa
ADD_R SQRT
EN ENO EN ENO
#renpl IN1 OUT | -gtempl #reupl | IN OUT —#result
#temp? o INZ
TEMP: REAL
Publication LOGIX-AP0O08B-EN-P - June 2008 117

Chapter4 Conversion of Typical Program Structures

Logix - ST

The expression is entered in the same way as with any other high-level
language.

FF ewaluation of mathematical expression in Struactured Text

result = (BIM{x)**2 + COS{x)**EZ)**0_L;

Logix - LD

Evalustion of expression
[Mate the rezult iz always 1)

ZPT
Compute —
D=t result
0.0 &
Exprezsion (SN2 + COS**2%*0 5

The CPT instruction enables the expression to be entered in a high-level
manner, which most people will understand more easily than a network (rung)
of separate instructions.

STEP 7 - User Function

This function block has been written to do much the same as Logix CPT.

CALL "CPT™ , "Data CPT™ FE11% / LE1lS
atr :="test_formulae™.test stringls F#DE16.DEX4AT6.0
b4 1=3.300000e+001

a :=0.000000e+000

b :=0.000000e+000

C :=0.000000e+000

result:=#realvVar

IN 01T

-- [f{coz ®)*2 4+ (=2in =)1*2) ~0.5 --
+3.300e+001
+0.000e+000
+0.000e+000
+0.000e+000

+1. 000e+000

118 Publication LOGIX-APO08B-EN-P - June 2008

Conversion of Typical Program Structures ~ Chapter 4

Publication LOGIX-APO08B-EN-P - June 2008

It reads and evaluates an expression string that is stored in a data block. It has
a limitation compared with Logix CPT - the expression is written in reverse
Polish notation, which will not suit everyone.

The main problems with writing a function block such as this are that it takes
time and is not for beginning programmers. With Logix, the CPT instruction is
available for everyone to use as soon as RSLogix 5000 software is installed.

Type Checking

With both STEP 7 and Logix, parameters to Functions, Function Blocks,
Instructions and Add-On Instructions are strictly type-checked by their
compilers.

There are differences with mathematical expressions.

Logix distinguishes between Numeric and Boolean values. The compiler will
reject expressions that illogically mix numeric and boolean values. When it
encounters expressions of mixed numeric type, it will make conversions to
produce a result of the type of the declared result variable. Hence it will
interpret * as integer multiplication if the result is to be an integer and as real
multiplication if the result is to be a real.

In STEP 7 the type of arithmetic operations must be specified. There are for
example *I (multiply two 16 bit integers) *D (multiply two 32 bit integer) and
*R (multiply two reals). It is up to the programmer to ensure that the two
numbers that are the operands of a *R instruction are reals. If they are not, the
compiler will not complain but the result will be nonsense.

Conclusion

The Logix methods of programming mathematical expressions are clearer, and
by separating math code from other logic, will simplify testing and validation.

119

Chapter4 Conversion of Typical Program Structures

Other Topics Related to Scope of Variables

Programming

This is an area where Logix differs considerably from STEP 7.

Rules for STEP 7

Temporary variables are invisible outside the block in which they are
declared.
Global static variables are visible throughout the program.

Static variables that are declared as instance data to a function block have a
special status in the F'B, but they can be accessed from other parts of the
program.

Rules for Logix

Execution in Logix is divided into Tasks. Each Task may have several
Programs and each Program may have several Routines. Each Program may
have its own tag section.

Controller scope tags are visible throughout all Routines in all Programs.

Program scope tags are visible only in the Routines in the Program in
which they are defined. This means that if a routine in one Program is to
share data with a routine in another Program, it must use Controller scope
data.

Add-On Instruction Local Tags are only visible to that Add-On
Instruction's logic.

0Bs, Tasks, and Scheduling

Organization Blocks, Tasks and Scheduling are described in Chapter 2.

120

Publication LOGIX-APO08B-EN-P - June 2008

Conversion of Typical Program Structures ~ Chapter 4

A Larger Example - Control
Module

Publication LOGIX-APO08B-EN-P - June 2008

This example will assemble some of the different topics illustrated in the
previous sections. The term “Control Module” (CM) comes from the
influential S88 Batch Control standard. S88 has encouraged controller
software design to be more “object oriented”. This Control Module is for a
binary valve. The Add-On Instruction is suitable for this type of programming;

Components of the CM

These are:

e aUDT called UDT_VALVE.
¢ an Add-On Instruction called AOI_VALVE_2SENSOR

* anew Program under “task_02s” called “valves_callup”, which contains
program tags section and a routine.

121

Chapter4 Conversion of Typical Program Structures

User Data Type Valve

The UDT is shown below.

I ame: UDT_WalvE
Dezcription: Data - binary valve ;I
[~
tembers: [rata Type Size: 24 bytels]
Mame Data Type Style Description
opening_preset DIMT Decimal max prezet for opening
closing_preset DINT Decimal max preset for clozing
state DINT Decimal state of valve [for internal logic)
state_saved DINT Decimal for evaluation of edge
timecount DINT Decimal walve timer
ato BaOL Decimal auto mode [zet from SCADA)
rnatiual EOOL Decimal manual mode [zet from SCADA)
clozed BOOL Decimal state of valve
OpEn BOOL Decimal state of valve
fault_clozing BOOL Decimal clozed senzor feedback not received
fault_opening BOOL Decimal open sensor feedback, not received
fault_senzors BOOL Decimal senzorz and logical state of valve do not agree
acquired BOOL Decimal acquired by EM
interlocked EOOL Decimal interlocked - de-energise
fail_open BOOL Decimal property - fails open

122

Building the UDT should be the first step - it includes all the data that is

necessary to model the valve.

Publication LOGIX-APO08B-EN-P - June 2008

Conversion of Typical Program Structures ~ Chapter 4

The Add-0n Instruction

Add-On Instruction Parameters

The screen shot shows the parameter configuration screen.

& Add-On Instruction Definition - ADI_YALYE_ZSENSOR 1.0 - O] =|

General Parameters | Local Tags| Scan Modes| Change Histu:ur_l,ll Helpl

M ame zage | Data Type Default Style Req|*is |Des
Enableln | FipLat BOOL T Decimal | [T | [T |Ena
EnableCut COutput [BOOL Ulbecimal | T | [T |Ena
zens_clozed | FipLat BOOL OlDecima | W | ¥ |conl
FENE_OpEn Input BOOL 0| Decimal F | ¥ con
autput Output [BOOL U/ Decimal M| ¥ con

EaR InOut |UDT_WALYE W | M |valv

2 | r

| i

Mave Up | M awe Down

Logic | [rata Type Size: 4 byte (=] ak I Cancel | ARl Help L

The parameters that have been added are the I/O for the valve and an object
of type “UDT_VALVE”. “V” must be an InOut parameter.

Publication LOGIX-APO08B-EN-P - June 2008 123

Chapter4 Conversion of Typical Program Structures

Add-On Instruction Local Data

The screen shot below shows the configuration page for the Add-On
Instruction local data.

& Add-On Instruction Definition - ADI_YALYE_ZSENSOR w1.0 N] [

General | Parameters Local Tags | Scan Modes | Change Histu:uryl Helpl

M ame & | Data Type Drefault Style [h
state_change BOOL

)]

Decimal

1| | i

Logic | [Data Type Size: 4 byte [z] Ok I Cancel | ARl | Help L

124 Publication LOGIX-APO08B-EN-P - June 2008

Conversion of Typical Program Structures ~ Chapter 4

Add-On Instruction Logic

The screen shot below shows the logic for this Add-On Instruction.

F4 Control Module Walwe Zsensor

F e

FF Implements logic for a walwe with an open and a closed sensor and one output
A4 Bee DT VWalwe for data structure.

ff Hote the openscolose command VW.open command must be set or reset externally
SF and then left until the next activation is regquired. Do not continaously
FF hold the flag set or reset.

SF dincrement timer counter
V.timecount = V_.timecount + 1:

f# evaluate change of state (state machine)
state_change = V.state =+ V.sztate_ sawved;
V.state saved = V.state;

£ =et output
output = (V. fail open xor V.open command) and not
(V.interlocked or V. faulted):

Ff owalve is faulted
V.faulted -= V. fault opening or V. fault closing or V. fault sensors;

f# action on fault or interlock

if V. faulted or V.interlocked then
if V.fail open then

W.state = 3;

V.open command = 1;
al=ze

W.state :$= 0;

V.open command = 0;
end if;

end if;

#4 state machine:

#4 the state machine does not set outputs - it monitors inputs
fF to set status and faults]

case VW.state of

f# state 0 - walwve is closed - wait for open commarnd
O0: W.closed = 1;
W.open = 0;
if (V.open Command) then
W_state = 1;
fFF fault sensors
else
V.fault senszors -= (not sens_closed) or (sens_open);
end if;
f§ state 1 -
l: W.state = Z;
fF state £ - waiting for open sensor
Z: if isens_open & not sens_closed) then
W_state = 3;

Publication LOGIX-APO08B-EN-P - June 2008 125

Chapter4 Conversion of Typical Program Structures

F& possible close command while waiting to open
elsif not V.open command then
V.state = 0;
FF fault opening
el=e
V. fault opening := (V.timecount > V.opening preset);
end if;
fFf state 3 - open - wait for close command
3: W.closed := 0O;
W.open = 1;
if (not V.open command) then
V.state -= 4;
F& fault sensors
else
V. fault senszors -= (sens_closed) or (not sens_open) ;
end if;
fi state 4 -
4: VW.state = E;
ff state § - wait for closed sensor
E: if (zens_closed & not sens_open] then
W.stakte -= 0;
F¥ possible open command while waiting to close
elsif V.open command then
V.state = 3;
A& fault closing
else
V.fault clozing = (V.timecount > V.closing preset);
end if;

alsea;
end case;
A4 end state machine

f§ reset timer if change of state
if (state_change) then V.timecount
end if;

1]
o
I

FF external fault reset
if (V.clear faults) then

V. fault opening := 0;

V. fault closing = 0;

V. fault sensors = 0;

V.clear faults = 0;
end if;

The tags referred to in this logic are all parameters or local tags. This means
that the Add-On Instruction could be used in any program (provided the
UDT Valve is also present).

126 Publication LOGIX-APO08B-EN-P - June 2008

Conversion of Typical Program Structures ~ Chapter 4

Call-up

Both the call-up code and the instances of UDT Valve are located in the
program “valves_callup”, which runs under task_02s. The frequency with
which the call-up code is executed depends on the application and the size of
the valve.

The screen shot below shows the data instances.

Scope: |E§, walves_callup j Shaw... Shiow Al
)

M ame Alias For | Baze Tag | Data Tepe
|+ valve_Zsens valve_2zenzor
| FHvalvel Walve
| Fvalves Walve
| wvaleed Vale
| valeed Walve
| Fvalveh Walve
R

Add an instance of type Valve for each physical valve. The first tag is the
required “backing tag” for the Add-On Instruction.

The screen shot below shows the call-up code.

Callup far 2 sensor valve 3
WAL YE_2EENSOR

WALWYE_2EENSOR valve_2sens |Z|
senz_clozed wiclosed

0«
SEMNE_0REn w3open

0&
output waout

0e
W valves

Callug for 2-sensor valve 2
WAL YE_2EENSOR

1 | E——
WaLYE_2SENSOR valve_2zens |Z|
senz_clozed w2closed

0«
SEMNE_0REn w20pen

0&
output w2out

0e
W valvez

Publication LOGIX-APO08B-EN-P - June 2008 127

Chapter4 Conversion of Typical Program Structures

Call the Add-On Instruction once for each valve. The actual parameters are
the actual I/O tags for the valve's sensors and solenoid, and the instance of
UDT “valve”.

The I/O tags will only appear in the call to the Add-On Instruction. They will
not be used anywhere else in the program. Apart from being tidier from the
software structure point of view, this cancels any risk of problems arising from

asynchronous updating of I/O.

Remember that with Logix controllers the I/O are scanned asynchronously.

128 Publication LOGIX-APO08B-EN-P - June 2008

Chapter 5

Introduction

Not Selecting
Appropriate Hardware

Publication LOGIX-APO08B-EN-P - June 2008

Common Mistakes when Converting to Logix

The objective of this section is to point out some of the design and
programming mistakes that S7 users often make when converting applications
to Logix. These mistakes have been identified by examination of Logix
programs that have been converted from STEP 7.

Topic Page
Not Selecting Appropriate Hardware 129
Underestimating Impact of Task Scheduling 130
Performing Translation Instead of Conversion 130
Not Using the Most Appropriate Logix Languages 130
Implementation of Incorrect Data Types — DINT versus INT 131
User Code Emulating Existing Instructions 132
Incorrect Usage of COP, MOV, and CPS 133
Incorrect Usage of CPT 133
Not Handling Strings in Optimal Way 133
Extensive Usage of Jumps 133
Not Using Aliased Tags 133

Programming mistakes fall into these two categories:

* Programming that leads to reduced controller efficiency.

* Programming that leads to a control system that is difficult to
understand, maintain, and develop.

In most cases, coding for efficiency will also improve the readability and
modularity of your program. Conversely, improving the program's structure
should also make it more efficient.

This chapter is concerned mainly with software. Remember, however, that the
correct selection of hardware is a requirement for satisfactory operation. It is
possible that the number of controllers and racks may not be the same as for
an equivalent S7 system.

Read Chapter 1 and Appendix A for more about hardware. More information
can be found in Appendices A and B.

129

Chapter5 Common Mistakes when Converting to Logix

Underestimating Impact of
Task Scheduling

Performing Translation
Instead of Conversion

Not Using the Most
Appropriate Logix
Languages

130

In the area of scheduling and interrupts, there isn't much difference in the
capability of the two systems. However, in the Logix world, scheduling is more
actively encouraged.

It is quite common for STEP 7 programmers to neglect scheduling when

working with Logix controllers. Please see Chapter 2 for a more detailed
account of scheduling in Logix.

It is a common mistake to translate line-by-line a STEP 7 program to Logix.

Instead, a more thorough process is needed, which is described as conversion.
This will cover choice of languages, scheduling and choice of code routines.

By converting rather than translating your STEP 7 programs, you will make
better use of the capability of your Logix system.

Programmers often neglect Logix languages other than ladder logic.

Read Chapter 2 for a discussion of how to choose a Logix language and
Chapter 4 for examples of STEP 7 code translated into Logix.

Publication LOGIX-APO08B-EN-P - June 2008

Common Mistakes when Converting to Logix ~ Chapter 5

|mp|ementation of Incorrect Itis commonly advised to use DINT rather than INT.

Data Types — DINT
versus INT

Publication LOGIX-APO08B-EN-P - June 2008

The example below shows an addition of two DINTS v. addition of two INTs.

Add DINTs

f# add tyo DINT=s and assign to a third DINT

for index = 0 £to 399 do
result DINT := operandd DINT + operandBE DINT:
end for;

Add INTs

#f add two INTs and assign to a third INT|

for index = 0 ta 233 do
result THT := operandi INT + operandBE TNT:
end for;

Timing Results

The table sows relative times (smaller number is faster). The numbers here are
only for comparison with other numbers in the table. They should not be
compared with entries in other tables.

Method Relative Times
Add DINTs with ST For Loop 53
Add INTs with ST For Loop 100

For comparison, the same test was done with an S7 controller. In this case,
results were identical for DINTSs and INTSs.

The lesson is to use DINT for all integer work in Logix. Only use INT or
SINT if you are interfacing to an external system that requires the use of INTs
or SINTS.

131

Chapter5 Common Mistakes when Converting to Logix

User Code Emul ating Prbogrammers often write user code when an existing instrudctiondwill do the
T . job. As an example, compare copying an array with user code and with the
Existing Instructions COP inctruction.

User Code

for index = 0 to 23 do
target DINT[index] := source_DINT[index]:;
end for;

COP Instruction

copisource DINTI[O], target DINT[O]1, 1l0O0);
1

Below are the relative timings for the two methods. Again, the numbers here
are only for comparison with other numbers in the table. They should not be
compared with entries in other tables.

Method Relative Timing
Copy array of DINTs with structured | 100

text

Copy array of DINTs with COP 18

To perform operations like copy arrays, STEP 7 library functions that are
written in Statement List ate used. If the library function doesn't do what is
required, a new one can be written. The functions written can be almost as
efficient as the ones that STEP 7 provides.

However in Logix, it is impossible for a programmer to write a copying
function that is as efficient as the built-in COP. The lesson for S7
programmers is to check the Instruction Help in RSLogix 5000 software
carefully before doing it yourself.

132 Publication LOGIX-APO08B-EN-P - June 2008

Common Mistakes when Converting to Logix ~ Chapter 5

Incorrect Usage of COP,
MOV, and CPS

Incorrect Usage of CPT

Not Handling Strings in
Optimal Way

Extensive Usage of Jumps

Not Using Aliased Tags

Publication LOGIX-APO08B-EN-P - June 2008

MOV copies a simple value (immediate or tag) to a simple tag type — DINT,
INT, SINT, or REAL. COP can do the same as MOV (the sourtce cannot be an
immediate value), but its more important use is to copy complex data types.

It would be a minor programming mistake to use COP to copy simple data
types.

A mistake that is seen often is to use multiple MOV’ to copy a data structure
when one COP could be used.

If your source data could change duting copying due to asynchronous I/O
updates, use CPS instead. This instruction cannot be interrupted so source
data will remain constant while copying,

In Logix, the CPT instruction can be used to evaluate expressions. The
expression is entered in one of the fields of the instruction. It is very
convenient.

However, CPT should only be used if more than one arithmetic instruction
would be required to evaluate the expression. If a single instruction is
sufficient, it will be faster than CPT.

You can read more about CPT in Chapter 4.

If you want to define a new String type, for example with a different number
of characters than the default 82, it would be a mistake to create a new ‘User
Data Type’. Instead, create a new String data type. The advantage of doing it
this way is that the ‘LEN’ field will automatically update as the length of the
string changes.

In Logix, jumps can only occur in Ladder Logic. It is recommended that JMP
instruction be used sparingly. Jumps in ladder logic often make the program
difficult to read.

Remember to create aliased tags for the I/O tags that RSLogix 5000 software
creates for you. They will make your program easier to read. See Chapter 2.

133

Chapter5 Common Mistakes when Converting to Logix

Notes:

134 Publication LOGIX-APO08B-EN-P - June 2008

Chapter 6

S7 to Logix Glossary

Introduction This chapter provides a glossary of S7 terms and their Logix equivalents.
Hardware Terminology
S$7 Term Definition Logix Term Definition
Communications Comms module Bridge
Processor
Controller The controller Controller
CPU Central Processing Unit CPU or Controller
Failsafe CPU CPU 315F-2 DP Implements PROFISAFE GuardLogix L61S, L62S, L63S
version of DP
Industrial Ethernet Siemens version of Ethernet Ethernet /IP Both of these have the same (or better)
ControlNet functionality as Industrial Ethernet
MPI Multi-Point Interface — a serial bus Serial DF1 or DH485 protocols
Programmable Controller or PAC
Controller
PROFIBUS DP Commonly used field bus Ethernet /IP
ControlNet
DeviceNet
PROFIBUS PA Variety of Profibus specializing in Pracess | As Profibus DP
Automation
PROFINET Profibus over Ethernet Ethernet /IP
PROFISAFE Failsafe version of PROFIBUS DP GuardLogix
S7-200 Low-end controllers MicroLogix
S7-300 Mid-range controllers Compactlogix
S7-400 High-end controllers ControlLogix
SIMATIC Brand name for Siemens automation Logix
products

Publication LOGIX-APO08B-EN-P - June 2008

135

Chapter 6

S7 to Logix Glossary

Software Terminology
$7 Term Definition Nearest Logix Term | Definition
Accumulator Used in STL N/A In Logix languages, there is no need to
access low-level structures of the CPU
AR1, AR2 Pointer registers N/A In Logix languages, there is no need to
access low-level structures of the CPU
Array Syntax ARRAYI[0...7] OF REAL Array Syntax REAL[8]
Indexing always starts at 0
Bit Memory Addresses M. N/A Use tags
Block Transfer Copy block of data. COP Instruction
SFC20 BLK_MOV (use MOV for a simple variable)
BOOL BOOL
BYTE 8 bit word SINT Use is deprecated (it's slower than DINT)
except when required (for example,
characters of string)
CFC Optional process control language FBD Standard function block language.
CHAR Byte as character SINT
Cycle_Execution 0B1 — Continuously executed Continuous Task Continuously executed
Data Block Unit of static data memory Controller-Scope Tag Global
database
or Program-scope tag | yisible within the Program that the
database database is linked to
DINT Double integer DINT Double integer
DWORD 32 bit word DINT
FBD Function Block Diagram FBD Function Block Diagram
Function Program Unit with Temporary memory but | Routine Both of these could correspond to a
no Static memory AOI (Add-On function
Instruction)
Function Block Program Unit with Temporary memory Routine All of these could correspond to a
and Static memory AOI (Add-On function block
Instruction)
Program
GRAPH Optional graphical language Sequential Function Standard Graphical Language
Chart
HW Config Hardware Configuration — component of | 1/0 Configuration Branch of Controller Organiser
STEP 7
INT Integer INT Use is deprecated (it's slower than DINT)
Interrupt_Execution Periodically executing 0B Periodic Task Periodically executing Task
LAD Ladder Logic LD Ladder Logic
Library System functions GSV, SSV Instructions —

Get System Value
Set System Value

136

Publication LOGIX-APO08B-EN-P - June 2008

S7to Logix Glossary ~ Chapter 6

S7 Term Definition Nearest Logix Term | Definition

NetPro Network Configurator N/A Part of /0 Configuration branch of
controller organiser.

Organization Block Program unit called by Operating System | Task Program unit called by Operating System

Pointer Data pointer used in STL N/A Use arrays

REAL 32 bit floating point number REAL 32 bit floating point number

SCL Optional high-level language Structured Text Standard Language

Simatic Manager

Component of STEP 7

Controller Organiser

Component of RSLogix 5000

STEP 7 Development and monitoring software for | RSLogix 5000 Development and monitoring software for
S7 Logix

STL Statement List N/A Use Structured Text or Ladder Logic or
Sequential Function Chart

STRING Sequence of CHARs. Default Length 254 | STRING Sequence of SINTs. Default length 82.
String object also contains its length as
property.LEN

STRUCT Untyped collection of data N/A In Logix a structure is an instance of type
(UDT)

Symbol Name for data memory address Tag Tag defines the structure of the variable
and reserves memory

Temporary memory Memory created on run-time stack N/A Use tags

WORD 16 bit word INT

ubnT User Data Type ubnT User Data Type

Publication LOGIX-APO08B-EN-P - June 2008

137

Chapter6 S7 to Logix Glossary

Notes:

138 Publication LOGIX-APO08B-EN-P - June 2008

Appendix A

Introduction

Publication LOGIX-APO08B-EN-P - June 2008

S7 300 and S7 400 Parts and RA Equivalents

This appendix lists Siemens products and their Rockwell Automation

equivalents.

Topic Page
Compact S7 300 CPUs 140
Standard S7 300 CPUs 140
Technology S7 300 CPUs 141
Fail-Safe S7 300 CPUs 142
S7 300 Digital Input Modules 142
S7 300 Digital Output Modules 143
S7 300 Relay Output Modules 144
S7 300 Digital Combo Modules 144
S7 300 Analog Input Modules 144
S7 300 Analog Output Modules 145
S7 300 Analog Combo Modules 146
S7 300 Analog Qutput Modules 146
Redundant and Fail Safe Controllers 147
Digital Input Modules 147
Digital Output Modules 147
Analog Input Modules 148
Analog Output Modules 148

139

Appendix A

S7 300 and S7 400 Parts and RA Equivalents

Compact S7 300 CPUs
Siemens Siemens | Memory Comms Max Embedded RA
Short Ports MMC 1/0 Solution
Catalogue Reference Size
Number
MPI DP Serial DI DO Al AO
6ES7 $7-312C | 32K Y N N 4MB 0 |6 1769-L31 +
312-5BEOX-xxxx Compact
1/0
ML1500
BES7 $7-313C | 64K Yes |Y N N 8 MB 24116 4 2 1763-L31 +
313-5BFOx-xxxx No No l%mpact
ML1500
6ES7 S7-313C- 64K Y N RS422/ | 8 MB 16 16 1769-L31 +
313-6BFOx-xxxx | PtP 485 Compact
/0
ML1500
6ES7 S7-313C- | 64K Y Y N 8 MB 16 16 1769-L31 +
313-6CFOx-xxxx | DP Compact
1/0
ML1500
6ES7 S7-314C- | 96K Y N RS422/ | 8 MB 24 16 4 2 1769-L31 +
314-6BGOx-xxx | PtP 485 Compact
X /0
ML1500
6ES7 S7-314C- 96K Yes | Y Y N 8 MB 24 16 4 2 1769-L31 +
314-6CG0x-xxx | DP Yes No 8 Compact
X MB /0
ML1500
Standard S7 300 CPUs
Siemens Siemens Short | Memory Comms Max Load RA Solution
Reference Ports Memory
Catalogue Size (RAM)
Number
MPI DP PN
6ES7 $7-312 32K Y N N 4MB 1769-131
312-1AETX-XXXX
6ES7 $7-314 96K Y N N 8 MB 1769-131
314-TAGTX-Xxxx
6ES7 S7-315-2 DP 128K Y Y N 8 MB 1769-L3xE or
315-2AG Tx-Xxxx 1769-L3xC

140

Publication LOGIX-APO08B-EN-P - June 2008

S7 300 and S7 400 Parts and RA Equivalents ~ Appendix A
Siemens Siemens Short | Memory Comms Max Load RA Solution
Reference Ports Memory
Catalogue Size (RAM)
Number
MPI DP PN
6ES7 S7-315-2PN/DP | 256K Y Y Y 8 MB 1769-L3xE or
315-2EHTX-xxxx 1769-L3xC
BES7 S7-317-2 DP 512K Y Y N 8 MB 1769-L3xE or
317-2AJ 1 x-xxxx 1769-L3xC
BES7 S7-317-2PN/DP | 1 MB Y Y Y 8 MB 1769-L3xE or
317-2EKTx-Xxxx 1769-L3xC
BES7 S7-319-3PN/DP | 1.4 MB Y Y Y 8 MB 1769-L3xE or
319-3ELOx-xxxx 1769-L3xC
Technology S7 300 CPUs
Siemens Siemens Short | Memory Comms Max Load RA Solution
Reference Ports Memory
Catalogue Size (RAM)
Number
MPI DP PN
BES7 $7-315T-2DP | 128K Y Y Y 40r8MB 1768-143
315-6TGTXx-xxxX
BES7 S7-3171-2 DP 512K Y Y Y 4 0r 8 MB 1768-143
317-BTJTx-xxxx
Publication LOGIX-AP0O08B-EN-P - June 2008 14

Appendix A

S7 300 and S7 400 Parts and RA Equivalents

Fail-Safe S7 300 CPUs

Siemens Siemens Short | Memory Comms Max Load RA Solution
Reference Ports Memory ControlLogix
Catalogue Size (RAM)
Number
MPI DP PN
BES7 S7-315F-2 DP 192K Y Y N 8 MB GuardLogix or
315-BFF1x-xxxx SmartGuard
600
6ES7 S7-315F-2 256K Y Y Y 8 MB GuardLogix or
315-2FHTx-xxxx PN/DP SmartGuard
600
BES7 S7-317F-2 DP 1 MB Y Y N 8 MB GuardLogix or
317-BFFOx-xxxx SmartGuard
600
6ES7 S7-317F-2 1 MB Y Y Y 8 MB GuardLogix or
317-2FK1x-xxxx PN/DP SmartGuard
600
S$7 300 Digital Input
Modules
Siemens Catalogue Front Points Range RA Solution Comments
Number Connector
BES7 321-1BHOx-xxxx 20-pin 16 24VDC 1769-1Q16
1769-1Q16F
BES7 321-1BH5x-xxxx 20-pin 16 24VDC 1769-1016
1769-1016F
BES7 321-1BLOX-xxxx 40-pin 32 24 \VDC 1769-1032
1769-1032T
BES7 321-1CHOX-xxxx 40-pin 16 24 ... 48V n/a
BES7 321-1CH2x-xxxx 20-pin 16 48 ...125VDC |n/a
BES7 321-1BH1x-xxxx 20-pin 16 24VDC 1769-1016
1769-1016F
BES7 321-7BHOx-xxxx 20-pin 16 24\/DC 1769-1016
1769-1016F
BES7 321-1FHOX-xxxx 20-pin 16 120 ... 230 VAC | 1769-1A16 1769-1A16
only admits
120 VAC
BES7 321-1FFOX-xxxx 20-pin 8 120 ...230 VAC | 1769-IM12 1769-IM12
only admits
230 VAC

142

Publication LOGIX-APO08B-EN-P - June 2008

S7 300 and S7 400 Parts and RA Equivalents ~ Appendix A
BES7 321-1FF1x-xxxx 40-pin 8 120 ... 230 VAC | 1769-1A8I 1769-1A8]
only admits
120 VAC
BES7 321-1ELOX-xxxx 40-pin 32 120 VAC n/a
n/a 16 5VDC TTL 1769-1G16
S$7 300 Digital Output
Modules
Siemens Catalogue Front Connector | Points Range Output Current | RA Solution Comments
Number
BES7 332-1FHOX-xxxx 20-pin 16 120/230 VAC 05A 1769-0A16
BES7 332-1FFOx-xxxx 20-pin 8 120/230 VAC 2A 1769-0A8 S7-300 has
fuse per
group
BES7 332-5FF0x-xxxx 40-pin 8 120/230 VAC 2A 1769-0A8 S7-300
comes in
groups of 1
BES7 322-1BHOX-xxxx 20-pin 16 24VDC 05A 1769-0B16
1769-0B16P
BES7 322-1BH1x-xxxx 20-pin 16 24VDC 05A n/a High Speed
BES7 322-1BLOX-Xxxx 40-pin 32 24\VDC 05A 1769-0B32
1769-0B32T
BES7 322-1BFOx-xxxx 20-pin 8 24VDC 2A 1769-0B8
BES7 322-8BFOx-xxxx 20-pin 8 24VDC 05A 1769-0B8
BES7 332-1FLOX-xxxx 2x20-pin 32 120 VAC TA n/a
BES7 332-5GHOX-xxxx 40-pin 16 24/48 'V 05A n/a
BES7 332-1CFOX-xxxx 20-pin 8 48 ...125VDC n/a
n/a 16 5VDC TTL 1769-0G16
n/a 16 24\VDC 1769-0V16
n/a 32 24\VDC 1769-0V32T
n/a 16 24\VDC 1769-0B16P

Publication LOGIX-APO08B-EN-P - June 2008

143

Appendix A

S7 300 and S7 400 Parts and RA Equivalents

S$7 300 Relay OQutput
Modules
Siemens Catalogue Front Connector | Points Output Current | RA Solution Comments
Number
BES7 322-1THHOX-Xxxx 20-pin 16 2A 1769-0W16
BES7 322-THFOX-xxxx 20-pin 8 5A 1769-0W8
BES7 322-THF1x-xxxx 40-pin 8 5A 1769-0W8lI
BES7 322-5HFOX-xxxx 40-pin 8 8A 1769-0W8l S7-300 module
comes with RC
filter and
overvoltage
protecction
S$7 300 Digital Combo
Modules
Siemens Catalogue Front Connector | Points Range Inputs Output Current | RA Solution Comments
Number
BES7 323-1BHOx-xxxx 20-pin 8/8 24VDC 24VDC/05A | 1769-106X0OW4 | Compact /0 has
less 1/0s and
outputs are relay
BES7 323-1BLOX-xxxx 40-pin 16/16 24\VDC 24\VDC/05A |n/a
BES7 327-1BHOX-xxxx 20-pin 8/8 24VDC 24VDC/05A |n/a 8 inputs; 8
inputs or outputs
(configurable)
S$7 300 Analog Input
Modules
Siemens Catalogue Front Points Resolution Type Compact Comments
Number Connector (bits) 1/0 Solution
BES7 331-1KFOx-xxxx 40 8 13 Voltage, 1769sc-I1F8U
C.urrent, 1769-1F8U
Resistance
Temperature
BES7 331-7KFOx-xxxx 20 8 9/12/14 Voltage, 1769sc-1F8U
C.urrent, 1769-IF8U
Resistance
Temperature

144

Publication LOGIX-APO08B-EN-P - June 2008

S7 300 and S7 400 Parts and RA Equivalents

Appendix A

BES7 331-7KBOx-xxxx 20 2 9/12/14 Voltage, 1769sc-IF8U
C,urrent, 1769-IF4
Resistance
Temperature
BES7 331-7NFOx-xxxx 40 8 16 Voltage 1769-1F8
Voltage
BES7 331-7NF1x-xxxx 40 8 16 Voltage 1769-1F8 Includes
Voltage hardware
interrupt at end
of cycle vs 6ES7
331-7NFOX-xxxx
BES7 331-7HFOX-xxxx 20 8 14 Voltage 1769-1F8
Voltage
BES7 331-7PFOx-xxxx 40 8 RTD 1769-1R6
Resistance
BES7 331-7PF1x-xxxx 40 8 Thermocouple 1769-IT6
n/a 1769-IF4|
S$7 300 Analog Output
Modules
Siemens Catalogue Front Points Resolution Type RA Solution Comments
Number Connector (bits)
6ES7 332-5HDOX-xxxx 40 4 12 Voltage 1769-0F4VI
Current 1769-0F4Cl
BES7 332-7NDOx-xxxx 20 4 16 Voltage 1769-0F4VI
Current 1769-0F4Cl
BES7 332-5HBOX-xxxX 20 2 12 Voltage 1769-0F2
Current
BES7 332-5HFOx-xxxx 20 8 12 Voltage 1769-0F8V
Current 1769-0F8C
Publication LOGIX-APO08B-EN-P - June 2008 145

Appendix A

S7 300 and S7 400 Parts and RA Equivalents

$7 300 Analog Combo
Modules
Siemens Catalogue Front Points Resolution Type RA Solution Comments
Number Connector (bits)
BES7 334-0KEOx-xxxx 20 4/2 12 Voltage Outputs only
Current Voltage
Pt 100
BES7 334-0CEOX-xxxx 20 4/2 8 Voltage and 1769-IFAX0F2
Current (Inputs
& Qutputs)
S7 400 Standard Controllers
Siemens Siemens Short | Work Comms Max Load RA Solution
Reference Memory Ports Memory ControlLogix
Catalogue Size Size (RAM)
Number
MPI DP PN
BES7 CPU 4121 144KB Y Y N 64MB 1756-L61
412-1XF04-0AB0
BES7 CPU 412-2 256KB Y Y N 64MB 1756-L61
412-2GX04-0AB0
6ES7 CPU 414-2 512KB Y Y N 64MB 1756-L62
414-2GX04-0AB0
BES7 CPU 414-3 1.4MB Y Y N 64MB 1756-L63
414-3XJ04-0AB0
BES7 CPU 414-3 2.8MB Y Y Y 64MB 1756-L63
414-3EM05-0AB0 | PN/DP
6ES7 CPU 416-2 2.8MB Y Y N 64MB 1756-L63
416-3XK04-0AB0
BES7 CPU 416-3 5.6MB Y Y N 64MB 1756-L64
416-3XL04-0AB0
BES7 CPU 416-3 11.2 MB Y Y Y 64MB 1756-L64
416-3ER05-0AB0 | PN/DP
6ES7 CPU 417-4 20MB Y Y N 64MB 1756-L64
417-4XL04-0AB0

146

Publication LOGIX-APO08B-EN-P - June 2008

S7 300 and S7 400 Parts and RA Equivalents

Appendix A

Redundant and Fail Safe
Controllers
Siemens Siemens Work Comms Max Load RA Solution
Catalogue Short Memory Ports Memory ControlLogix
Number Reference Size Size (RAM)
MPI DP PN Sync
ports
BES7 CPU 414-4H 1.4MB Y Y N Y 64MB 1756-L63
414-4HJ04-0ABO
BES7 CPU 417-4H 20MB Y Y N Y 64MB 1756-L64
417-4HL04-0ABO
BES7 CPU-416F-2 2.6MB Y Y N N 64MB 1756-L61S
416-2FK04-0AB0
Digital Input Modules
Siemens Catalogue Front Connector | Points Range RA Solution Comments
Number
BES7 421-7BH01-0AB0 48 pin 16 24V DC 1756-1B16D
(Interrupt/ diagnostic)
BES7 421-1BL01-0AAD 48 pin 32 24V DC 1756-1B32
BES7 421-1ELO0-0AAQ 48 pin 32 120V AC/DC 1756-1A32
BES7 421-1FH20-0AA0 48 pin 16 230V AC/DC 1756-IM161
BES7 421-7DH00 0ABO 48 pin 32 24-60V AC/DC
(Interrupt/ diagnostic)
Digital Output Modules
Siemens Catalogue Front Points Range Current RA Solution Comments
Number Connector
BES7 422-1FH00-0AAD 48 pin 16 230VAC 2A 1756-0A16
BES7 422-1HHO0-0AAQ 48 pin 16 60V DC230V AC | BA 1756-0W16l
(relay)
6ES7 422 1BH11-0AAD 48 pin 16 24VDC 2A 1756-0B16E
BES7 422-1BL00-0AAD 48 pin 32 24VDC 0.5A 1756-0B32
BES7 422-7BL00-0ABO 48 pin 32 24VDC 0.5A 1756-0B16D
(Diagnostic) 1756-0B32

Publication LOGIX-APO08B-EN-P - June 2008

147

Appendix A S7300 and S7 400 Parts and RA Equivalents

Analog Input Modules
Siemens Catalogue Front Channels Resolution Type RA Solution | Comments
Number Connector (bits)
6ES7 431-0HHO-0ABO 48 pin 16 13 Voltage 1756-IF16 16 bits
Current
6ES7 431-1KF00-0ABO 48 pin 8 13 Voltage 1756-IF8 16 bits
Current 4 differential
Impedance Inputs
6ES7 431-1KF10-0ABO 48 pin 8 14-16 \oltage 1756-IR6l 6 RTD
Current 1756-1T6l 6 Thermocouple
Thermocouple Both 16 bit
Thermoresistor
Impedance
6ES7 431-1FK20-0AB0 48 pin 8 14 Voltage 1756-1F16 16 bit
Current
Impedance
6ES7 431-7QH00-0ABO 48 pin 16 16 Voltage 1756-IR6l 6 RTD
(Interrupt) Current 1756-IT61 6 Thermocouple
Thermocouple
Thermoresistor
Impedance
B6ES7 431-7KF00-0ABO 48 pin 8 16 Voltage 1756-IT6l 6 channels
Current
Thermocouple
6ES7 431-7KF01-0ABO 48 pin 8 16 Thermoresistor | 1756-IR6l 5 channels
Analog Output Modules
Siemens Catalogue Front Channels Resolution Type RA Solution Comments
Number Connector (bits)
6ES7 432-1HF00-0ABO 48 pin 8 13 Voltage 1756-0F8 15 bits
Current

148

Publication LOGIX-APO08B-EN-P - June 2008

Appendix B

Siemens HMI Cross Reference Table

Use this appendix to compare Rockwell Automation panels to specific types of
Siemens panels.

Topic Page
SIMATIC Micro Panels and Rockwell Automation Equivalents 149
SIMATIC Panels - 7x Series and Rockwell Automation Equivalents 151
SIMATIC Panels - 17x Series and Rockwell Automation Equivalents 152
SIMATIC Panels - 27x Series and Rockwell Automation Equivalents 155
SIMATIC Multi Panels - 27x Series and Rockwell Automation Equivalents 157
SIMATIC Multi Panels - 37x Series and Rockwell Automation Equivalents 159
SIMATIC Micro Panels and
Rockwell Automation
Equivalents
SIMATIC Micro Panels Rockwell Automation Solution
Siemens Short Description | Mem. | Comm. Rockwell Name Description
Catalog Reference Options Automation
Number Catalog
Number
6AV6640- SIMATICOP | 3in. STN 128 KB | 1xRS485, 2711P- PanelView 3.8in. STN 32-level
0BA11-0AX0 | 73MICRO monochrome S7-200 K4M5D Plus 400 grayscale display,
display, compatible, grayscale 320 x 240 pixels,
160x48 pixels, no printer keypad RS-232
keypad, port communication,
24V DC only keypad, 24V DC,
64 MB flash, USB
printing
capabilities
BAVB545- SIMATIC 5.7in. STN 128 KB | 1xRS485, 2711P- PanelView 5.5in. STN 32-level
0AA15-2AX0 | TPO70 display, Blue S7-200 T6MS5D Plus 600 grayscale display,
mode compatible, grayscale 320 x 240 pixels,
Phased out in | (4 levels), no printer touch RS-232
April 2007 320x240 port communication,
pixels, touch, 24V DC, USB
touch, printing
24V DC only capabilities

Publication LOGIX-APO08B-EN-P - June 2008 149

Appendix B Siemens HMI Cross Reference Table

SIMATIC Micro Panels Rockwell Automation Solution
Siemens Short Description | Mem. | Comm. Rockwell Name Description
Catalog Reference Options Automation
Number Catalog
Number
B6AV6640- SIMATICTP | 5.7 in. STN 256 KB | 1xRS485, 2711P- PanelView 5.5in. STN 32-level
0CA01-0AX0 | 170MICRO display, Blue S7-200 T6M5D Plus 600 grayscale display,
mode compatible, grayscale 320x240 pixels,
Phased out in | (4 levels), no printer touch RS-232
April 2007 320x240 port communication,
pixels, touch, touch, 24V DC, USB
24V DC only, printing
limited capabilities
application
functionality
6AV6640- SIMATICTP | 5.7 in. STN 256 KB | 1xRS485, 2711P- PanelView 5.5in. STN 32-level
0CA11-0AX0 | 177MICRO display, Blue S7-200 T6M5D Plus 600 grayscale display,
mode compatible, grayscale 320x240 pixels,
(4 levels), no printer touch RS-232
320x240 port communication,
pixels, touch, touch, 24V DC, USB
24V DC only printing
capabilities
6AV6610- WINCC Configuration | N/A N/A 9701- RSView RSView Studio for
0AAQ1-1CA8 | FLEXIBLE and VWSTMENE | Studio Machine Edition
MICRO programming Machine configuration
software software for Edition software for
Simatic micro software developing and
panels only testing machine
level HMI
applications

150 Publication LOGIX-APO08B-EN-P - June 2008

Siemens HMI Cross Reference Table ~ Appendix B
SIMATIC Panels - 7x Series
and Rockwell Automation
Equivalents
SIMATIC Panels - 7x Series Rockwell Automation Solution
Siemens Short Description | Mem. | Comm. Rockwell Name Description
Catalog Reference Options Automation
Number Catalog
Number
BAV6641- SIMATIC 3in. STN 256 KB | 1x RS485, 2711P- PanelView 3.8in. STN 32-level
0AA11-0AX0 | OP73 monochrome S7-200, S7- | K4M5D Plus 400 grayscale display,
display, 300/400 grayscale 320x240 pixels,
160x48 pixels, compatible, keypad RS-232
keypad, no printer communication,
24V DC only port keypad, 24V DC,
64 MB flash, USB
printing
capabilities
BAV6641- SIMATIC 45in. STN 256 KB | 1xRS422, 2711P- PanelView 3.8in. STN 32-level
0BA11-0AX0 | OP77A monochrome 1xRS485, K4M5D Plus 400 grayscale display,
display, S7-200, grayscale 320x240 pixels,
160x64 pixels, S7-300/400,n keypad RS-232
keypad. o printer port communication,
24V DC only keypad, 24V DC,
64 MB flash, USB
printing
capabilities
6AV6641- SIMATIC 45in. STN 1 MB 1xRS232, 2711P- PanelView 3.8in. STN 32-level
0CA01-0AX0 | QP77B monochrome 1xRS422, K4M5D Plus 400 grayscale display
display, 1xRS485, grayscale 320x240 pixels,
160x64 pixels, USB, S7-200, keypad RS-232
keypad, S7-300/400, communication,
24V DC only printer port keypad, 24V DC,
available 64 MB flash, USB
printing
capabilities
6AV6621- WINCC Configuration | N/A N/A 9701- RSView RSView Studio
0AA01-0AAQ | FLEXIBLE and VWSTMENE | Studio for Machine Edition
COMPACT programming Machine configuration
software software for Edition software for
Simatic OP77, software developing and
OP/TP170, and testing machine
micro panels level HMI
applications
Publication LOGIX-APO08B-EN-P - June 2008 151

Appendix B Siemens HMI Cross Reference Table

SIMATIC Panels - 17x
Series and Rockwell
Automation Equivalents

SIMATIC Panels - 17x Series

Rockwell Automation Solution

Siemens Short Description | Mem. | Comm. Rockwell Name Description
Catalog Reference Options Automation
Number Catalog
Number
BAV6545- SIMATIC 5.7in.STN 320KB | 1xRS232, 2711P- PanelView 5.5in. STN 32-level
0BA15-2AX0 | TP170A Blue | display, Blue 1xRS422, T6M20D Plus 600 grayscale display,
mode mode 1xRS485, S5, grayscale 320x240 pixels,
(4 levels), S7-200, touch EtherNet/IP,
Phased out in | 320x240 S7-300/400, RS-232
April 2007 pixels, touch, and communication,
24V DC only third-party touch, 24V DC,
controllers, 64 MB flash, USB
no printer printing
port capabilities
BAVE545- SIMATIC 5.7in.STN 768 KB | 2xRS232, 2711P- PanelView 5.5in. STN 32-level
0BB15-2AX0 | TP170B Blue | display, Blue 1xRS422, T6M20D Plus 600 grayscale display,
mode mode 1xRS485, S5, grayscale 320x240 pixels,
(4 levels), S7-200, touch EtherNet/IP,
Phased out in | 320x240 S7-300/400, RS-232
April 2007 pixels, touch, and communication,
24V DC only third-party touch, 24V DC,
controllers, 64 MB flash, USB
printer port printing
available capabilities
BAVE545- SIMATIC 5.7in.STN 768 KB | 2xRS232, 2711P- PanelView 5.5in. TFT color
0BC15-2AX0 | TP170B color | display, color 1xRS422, T6C20D Plus 600 color | display, 320x240
(256 colors), 1xRS485, Sb, touch pixels, 18-bit color
Phased out in | 320x240 S7-200, depth, EtherNet/IP,
April 2007 pixels, touch. S7-300/400, RS-232
24V DC only and communication,
third-party touch, 24V DC,
controllers, 64 MB flash, USB
printer port printing
available capabilities
BAV6542- SIMATIC 5.7in.STN 768 KB | 2xRS232, 2711P- PanelView 5.5in. STN 32-level
0BB15-2AX0 | OP170B Blue | display, Blue 1xRS422, B6M20D Plus 600 grayscale display,
mode mode 1xRS485, Sb, grayscale 320x240 pixels,
(4 levels), S7-200, touch and EtherNet/IP,
Phased out in | 320x240 S7-300/400, keypad RS-232
April 2007 pixels, keypad and communication,
and touch, third-party touch and keypad,
24V DC only controllers, 24V DC, 64 MB
printer port flash, USB printing
available capabilities
BAV6642- SIMATIC 5.7in.STN 2 VB 1xRS422, 2711P- PanelView 5.5in. STN 32-level
0DCO1-1AX0 | OP177B Blue | display, Blue 1xRS485, B6M20D Plus 600 grayscale display,
mode mode USB, grayscale 320x240 pixels,
(4 levels), Ethernet, S5, touch and EtherNet/IP,
320x240 S7-200, keypad RS-232
pixels, keypad S7-300/400, communication,
and touch, and touch and keypad,
24V DC only third-party 24V DC, 64 MB
controllers, flash, USB printing
printer port capabilities
available

152

Publication LOGIX-APO08B-EN-P - June 2008

Siemens HMI Cross Reference Table

Appendix B

SIMATIC Panels - 17x Series

Rockwell Automation Solution

Siemens Short Description | Mem. | Comm. Rockwell Name Description
Catalog Reference Options Automation
Number Catalog
Number
BAV6642- SIMATIC 5.7in. STN 512KB | 1xRS422, 2711P-T6M20 | PanelView 5.5-inch STN
0AA11-0AX0 | TP177A Blue | display, Blue 1xRS485, D Plus 600 32-level Grayscale
mode mode S7-200, Grayscale Display, Display
(4 levels), S7-300/400 Touch 320 x 240, pixels,
320x240 compatible, EtherNet/IP,
pixels, touch, no printer RS-232
24V DC only port Communications,
Touch, 24VDC, 64
MB Flash, USB
Printing
capabilities
BAV6642- SIMATIC 5.7in. STN 2 VB 1xRS422, 2711P-T6C20 | PanelView 5.5-inch TFT Color
0BAO1-1AX0 | TP177B color | display, color 1xRS485, D Plus 600 display; 320 x 240
(256 colors), USB, Color Touch pixels, 18-bit Color
320x240 Ethernet, S5, depth, EtherNet/IP,
pixels, touch. S7-200, RS-232
24V DC only S7-300/400, Communications,
and Touch, 24VDC, 64
third-party MB Flash, USB
controllers, Printing
printer port capabilities
available
BAV6642- SIMATIC 5.7in. STN 2 MB 1xRS422, 2711P-T6M20 | PanelView 5.5-inch STN
0BCO1-1AX0 | TP177B Blue | display, Blue 1xRS485, D Plus 600 32-level Grayscale
mode mode USB, Sb, Grayscale Display, Display
(4 levels), S7-200, Touch 320 x 240, pixels,
320x240 S7-300/400, EtherNet/IP,
pixels, touch, and RS-232
24V DC only third-party Communications,
contrallers, Touch, 24VDC, 64
printer port MB Flash, USB
available Printing
capabilities

Publication LOGIX-APO08B-EN-P - June 2008

153

Appendix B

Siemens HMI Cross Reference Table

SIMATIC Panels - 17x Series

Rockwell Automation Solution

Siemens Short Description | Mem. | Comm. Rockwell Name Description
Catalog Reference Options Automation
Number Catalog
Number
BAV6642- SIMATIC 5.7in.STN 2 MB 1xRS422, 2711P- PanelView 5.5 in. TFT color
8BA10-0AA0 | TP177B color | display, color 1xRS485, T6C20D Plus 600 color | display, 320x240
stainless (256 colors), USB, touch pixels, 18-bit color
steel 320x240 Ethernet, S5, depth, EtherNet/IP,
pixels, touch, S7-200, RS-232
24V DC only, S7-300/400, communication,
stainless and touch, 24V DC,
steel bezel third-party 64 MB flash, USB
controllers, printing
printer port capabilities
available
BAV6642- SIMATIC 5.7in. STN 2 VB 1xRS422, 2711P- PanelView 5.5in. TFT color
0DA01-1AX0 | OP177B color | display, color 1xRS485, B6C20D Plus 600 color | display, 320x240
(256 colors), USB, touch and pixels, 18-bit color
320x240 Ethernet, S5, keypad depth, EtherNet/IP,
pixels, keypad S7-200, RS-232
and touch, S7-300/400, communication,
24V DC only and touch and keypad,
third-party 24V DC, 64 MB
controllers, flash, USB printing
printer port capabilities
available
BAV6621- WINCC Configuration | N/A N/A 9701- RSView RSView Studio
0AA01-0AAO | FLEXIBLE and VWSTMENE | Studio Machine Edition
COMPACT programming Machine configuration
software software for Edition software for
Simatic OP77, software developing and
OP/TP170 & testing machine
micro panels level HMI

applications

154

Publication LOGIX-APO08B-EN-P - June 2008

Siemens HMI Cross Reference Table ~ Appendix B
SIMATIC Panels - 27x
Series and Rockwell
Automation Equivalents
SIMATIC Panels - 27x Series Rockwell Automation solution
Siemens Short Description | Mem. | Comm. Rockwell Name Description
Catalog Reference Options Automation
Number Catalog
Number
BAV6545- SIMATIC 5.71in. STN 2MB 2xRS232, 2711P- PanelView 5.5in. TFT color
0CA10-0AX0 | TP2706 in. display, color 1xRS422, T6C20D Plus 600 color | display, 320x240
color (256 colors), 1xRS485, touch pixels, 18-bit color
320x240 USB, S5, depth, EtherNet/IP,
Phased out in | pixels, touch, S7-200, RS-232
October 2006 | 24V DC only S7-300/400, communication,
and touch, 24V DC,
third-party 64 MB flash, USB
controllers, printing
printer port capabilities
available.
BAVB545- SIMATIC 10.4in. STN | 2MB 2xRS232, 2711P- PanelView 10.4in. TFT display,
0CC10-0AX0 | TP270101in. | display, color 1xRS422, T10C4D1 Plus 1000 640x480 pixels,
color (256 colors), 1xRS485, color touch 18-bit color,
640x480 USB, S5, EtherNet/IP and
Phased out in | pixels, touch, S7-200, RS-232, touch,
October 2006 | 24V DC only S7-300/400, 24V DC, 64 MB
and flash, USB printing
third-party capabilities
controllers,
printer port
available
B6AVE542- SIMATIC 5.7in.STN 2 VB 2xRS232, 2711P- PanelView 5.5in. TFT color
0CA10-0AX0 | OP2706 in. display, color 1xRS422, K6C20D Plus 600 color | display, 320x240
color (256 colors), 1xRS485, pixels, 18-bit color
320x240 USB, S5, depth, EtherNet/IP,
Phased out in | pixels, S7-200, RS-232
October 2006 | keypad, S7-300/400, communication,
24V DC only and keypad, 24V DC,
third-party 64 MB flash, USB
controllers, printing
printer port capabilities
available
BAV6542- SIMATIC 10.4in.STN | 2MB 2xRS232, 2711P- PanelView 10.4in. TFT display,
0CC10-0AX0 | OP27010in. | display, color 1xRS422, K10C4D1 Plus 1000 640x480 pixels,
color (256 colors), 1xRS485, color keypad | 18-bit color,
640x480 USB, S5, EtherNet/IP and
Phased outin | pixels, S7-200, RS-232, keypad,
October 2006 | keypad, S7-300/400, 24V DC, 64 MB
24V DC only and flash, USB printing
third-party capabilities
controllers,
printer port
available
Publication LOGIX-APO08B-EN-P - June 2008 155

Appendix B

Siemens HMI Cross Reference Table

SIMATIC Panels - 27x Series

Rockwell Automation solution

Siemens Short Description | Mem. | Comm. Rockwell Name Description
Catalog Reference Options Automation
Number Catalog
Number
BAV6643- SIMATIC TP 5.7in.STN 4 MB 1xRS422, 2711P- PanelView 5.5 in. TFT color
0AAQ01-1AX0 | 277 6 in. color | display, color 1xRS485, T6C20D Plus 600 color | display, 320x240
(256 colors), USB, touch pixels, 18-bit color
320x240 Ethernet: S5, depth, EtherNet/IP,
pixels, touch, S7-200, RS-232
24V DC only S7-300/400, communication,
and touch, 24V DC,
third-party 64 MB flash, USB
controllers, printing
printer port capabilities
available
BAV6643- SIMATICOP | 5.7in. STN 4 MB 1xRS422, 2711P- PanelView 5.5in. TFT color
0BAO1-1AX0 | 277 6 in. color | display, color 1xRS485, K6C20D Plus 600 color | display, 320x240
(256 colors), USB, pixels, 18-bit color
320x240 Ethernet, S5, depth, EtherNet/IP,
pixels, S7-200, RS-232
keypad, S7-300/400, communication,
24V DC only and keypad, 24V DC,
third-party 64 MB flash, USB
controllers, printing
printer port capabilities
available.
B6AV6622- WINCC Configuration | N/A N/A 9701- RSView RSView Studio
0BA01-0AAQ | FLEXIBLE and VWSTMENE | Studio Machine Edition
STANDARD programming Machine configuration
software software for Edition software for
Simatic software developing and
OP/TP/ testing machine
MP270, level HMI
MP370, 0P77, applications
OP/TP170and
micro panels

156

Publication LOGIX-APO08B-EN-P - June 2008

Siemens HMI Cross Reference Table

Appendix B

SIMATIC Multi Panels - 27x
Series and Rockwell
Automation Equivalents

SIMATIC Multi Panels - 27x Series

Rockwell Automation Solution

Siemens Short Description | Mem. | Comm. Rockwell Name Description
Catalog Reference Options Automation
Number Catalog
Number
BAV6542- SIMATIC 10.4 in. 5MB 2xRS422, 2711P- PanelView 10.4in. TFT display,
0AG10-0AX0 | MP270B TFT display, 1xRS485, K10C4D1 Plus 1000 640x480 pixels,
keypad 10in. | color (64 k USB, color keypad | 18-hit color,
colors), Ethernet, Sb, EtherNet/IP and
Phased out in | 640x480 S7-200, RS-232, keypad,
October 2006 | pixels, S7-300/400, 24V DC, 64 MB
keypad, and flash, USB printing
24V DC only third-party capabilities
controllers,
printer port
available
BAVB545- SIMATIC 10.4in. TFT | 5MB 2xRS422, 2711P- PanelView 10.4in. TFT display,
0AG10-0AX0 | MP270B display, color 1xRS485, T10C4D1 Plus 1000 640x480 pixels,
touch, 101in. | (64 k colors), USB, color touch 18-bit color,
Phased out in | 640x480 Ethernet, Sb, EtherNet/IP and
October 2006 | pixels, touch, S7-200, RS-232, touch,
24V DC only S7-300/400, 24V DC, 64 MB
and flash, USB printing
third-party capabilities
controllers,
printer port
available
BAVE545- SIMATIC 5.7in. TFT 5MB 2xRS422, 2711P- PanelView 5.5in. TFT color
0AH10-0AX0 | MP270B display, color 1xRS485, K6C20D Plus 600 color | display, 320x240
touch, 6 in. (64 k colors), USB, pixels, 18-bit color
320x240 Ethernet, Sb, depth, EtherNet/IP,
Phased out in | pixels, touch, S7-200, RS-232
October 2006 | 24V DC only S7-300/400, communication,
and keypad, 24V DC,
third-party 64 MB flash, USB
controllers, printing
printer port capabilities
available
BAV6643- SIMATICMP | 7.5in. TFT 6 MB 1xRS422, 2711P- PanelView 6.5 in.TFT display,
0CBO1-1AX0 | 277 touch, display, color 1xRS485, T7C4D1 Plus 700 color | 640x480 pixels,
8in. (64 k colors), 2xUSB, touch 18-bit color,
640x480 Ethernet, S, EtherNet/IP and
pixels, touch, S7-200, RS-232, touch,
24V DC only S7-300/400, 24V DC, 64 MB
and flash, USB printing
third-party capabilities
controllers,
printer port
available

Publication LOGIX-APO08B-EN-P - June 2008

157

Appendix B Siemens HMI Cross Reference Table

SIMATIC Multi Panels - 27x Series Rockwell Automation Solution
Siemens Short Description | Mem. | Comm. Rockwell Name Description
Catalog Reference Options Automation
Number Catalog
Number
BAV6643- SIMATICMP | 10.4in. TFT | 6 MB 1xRS422, 2711P- PanelView 10.4in. TFT display,
0CDO1-1AX0 | 277 touch, display, color 1xRS485, T10C4D1 Plus 1000 640x480 pixels,
10in. (64 k colors), 2xUSB, color touch 18-bit color,
640x480 Ethernet: S5, EtherNet/IP and
pixels, touch, S7-200, RS-232, touch,
24V DC only S7-300/400, 24V DC, 64 MB
and flash, USB printing
third-party capabilities
controllers,
printer port
available
_ SIMATICMP | 10.4in. TFT | 6 MB 1xRS422, 2711P- PanelView 10.4in. TFT display,
277 touch, display, color 1xRS485, T10C4D1 Plus 1000 640x480 pixels,
10in., (64 k colors), 2xUSB, color touch 18-bit color,
stainless 640x430 Ethernet, S5, EtherNet/IP and
steel pixels, touch, S7-200, RS-232, touch,
24V DC only, S7-300/400, 24V DC, 64 MB
stainless and flash, USB printing
steel bezel, third-party capabilities
IP66 controllers,
printer port
available
BAV6643- SIMATICMP | 7.5in. TFT 6 MB 1xRS422, 2711P- PanelView 6.5 in. TFT display,
0DBO1-1AX0 | 277 keypad, | display, color 1xRS485, K7C4D1 Plus 700 color | 640x480 pixels,
8in. (64 k colors), 2xUSB, keypad 18-bit color,
640x480 Ethernet, S5, EtherNet/IP and
pixels, S7-200, RS-232, keypad,
keypad, S7-300/400, 24V DC, 64 MB
24V DC only and flash, USB printing
third-party capabilities
controllers,
printer port
available
BAVE643- SIMATICMP [10.5in. TFT | 6 MB 1xRS422, 2711P- PanelView 10.4in. TFT display,
0DDO01-1AX0 | 277 keypad, | display, color 1xRS485, K10C4D1 Plus 1000 640x480 pixels,
101in. (64 k colors), 2xUSB, color keypad | 18-hit color,
640x480 Ethernet, S5, EtherNet/IP and
pixels, S7-200, RS-232, keypad,
keypad, S7-300/400, 24V DC, 64 MB
24V DC only and flash, USB printing
third-party capabilities
controllers,
printer port
available
BAV6622- WINCC Configuration | N/A N/A 9701- RSView RSView Studio
0BA01-0AAQ | FLEXIBLE and VWSTMENE | Studio Machine Edition
STANDARD programming Machine configuration
software software for Edition software for
Simatic software developing and
OP/TP/ testing machine
MP270, level HMI
MP370, 0P77, applications
OP/TP170and
micro panels

158 Publication LOGIX-APO08B-EN-P - June 2008

Siemens HMI Cross Reference Table ~ Appendix B
SIMATIC Multi Panels - 37x
Series and Rockwell
Automation Equivalents
SIMATIC Multi Panels - 37x Series Rockwell Automation Solution
Siemens Short Description | Mem. | Comm. Rockwell Name Description
Catalog Reference Options Automation
Number Catalog
Number
BAV6542- SIMATIC 12.1in. TFT 125 MB | 1xTTY, 2711P- PanelView 12.7in. TFT display,
ODA10-0AX0 | MP370 display, color 2xRS232, K12C4D1 Plus 1250 800x600 pixels,
keypad, 12 in. | (256 colors), 1xRS422, color keypad | 18-bit color,
800x600 1xRS485, EtherNet/IP and
pixels, 1xUSB, RS-232, keypad,
keypad, Ethernet, S5, 24V DC, 64 MB
24V DC only S7-200, flash, USB printing
S7-300/400, capabilities
and third-party
controllers,
printer port
BAV6545- SIMATIC 12.1in. TFT 125 MB | 1xTTY, 2711P- PanelView 12.1in. TFT display,
0DA10-0AX0 | MP370 touch, | display, color 2xRS232, T12C4D1 Plus 1250 800x600 pixels,
121in. (256 colors), 1xRS422, color touch 18-bit color,
800x600 1xRS485, EtherNet/IP and
pixels, touch, 1xUSB, RS-232, touch,
24V DC only Ethernet, S5, 24V DC, 64 MB
S7-200, flash, USB printing
S7-300/400, capabilities
and third-party
controllers,
printer port
BAV6545- SIMATIC 15.7in. TFT 12.5MB | 1xTTY, 2711P- PanelView 15in. TFT display,
0DB10-0AX0 | MP370 touch, | display, color 2xRS232, T15C4D1 Plus 1500 1024x768 pixels,
151n. (256 colors), 1xRS422, color touch 18-bit color,
1024x768 1xRS485, EtherNet/IP and
pixels, touch, 1xUSB, RS-232, touch,
24V DC only Ethernet, S5, 24V DC, 64 MB
S7-200, flash, USB printing
S7-300/400, capabilities
and third-party
controllers,
printer port
BAV6545- SIMATIC 15.7in. TFT 12.5MB | 1xTTY, 2711P- PanelView 15in. TFT display,
8DB10-0AA0 | MP370 touch, | display, color 2xRS232, T15C4D1 Plus 1500 1024x768 pixels,
151n., (256 colors), 1xRS422, color touch 18-bit color,
stainless 1024x768 1xRS485, EtherNet/IP and
steel pixels, touch, 1xUSB, RS-232, touch,
24V DC only, Ethernet, S5, 24V DC, 64 MB
stainless S7-200, flash, USB printing
steel bezel, S7-300/400, capabilities
IP66 and third -party
controllers,
printer port
Publication LOGIX-APO08B-EN-P - June 2008 159

Appendix B Siemens HMI Cross Reference Table

SIMATIC Multi Panels - 37x Series Rockwell Automation Solution
Siemens Short Description | Mem. | Comm. Rockwell Name Description
Catalog Reference Options Automation
Number Catalog
Number
BAV6 644- SIMATIC 12.10n. TFT 12.5MB | 1xTTY, 2711P- PanelView 12.1in. TFT display,
0AAQ01-2AX0 | MP377 touch | display, 2xRS232, T12C4D1 Plus 1250 800x600 pixels,
12.10n. 65,536 colors, 1xRS422, color touch 18-bit color,
800x600 1xRS485, EtherNet/IP and
pixels, touch, 2xUSB, RS-232, touch,
24V DC only 2xEthernet, S5, 24V DC, 64 MB
S7-200, flash, USB printing
S7-300/400, capabilities
and third-party
controllers,
printer port
BAV6 644- SIMATIC 12.1in. TFT 12.5MB | 1xTTY, 2711P- PanelView 12.1in. TFT display,
0BA01-2AX0 | MP377 display, 2xRS232, K12C4D1 Plus 1250 800x600 pixels,
keypad, 65,536 coloars, 1xRS422, color keypad | 18-hit color,
12.7in. 800x600 1xRS485, EtherNet/IP and
pixels, 2xUSB, RS-232, keypad,
keypad, 2xEthernet, S5, 24V DC, 64 MB
24V DC only S7-200, flash, USB printing
S7-300/400, capabilities
and third-party
controllers,
printer port
BAV6 644- SIMATIC 15in. TFT 12.5MB | 1xTTY, 2711P- PanelView 15 in. TFT display,
0ABO1-2AX0 | MP377 touch, | display, 2xRS232, T15C4D1 Plus 1500 1024x768 pixels,
151n. 65,536 colors, 1xRS422, color touch 18-bit color,
1024x768 1xRS485, EtherNet/IP and
pixels, touch, 2xUSB, RS-232, touch,
24V DC only 2xEthernet, S5, 24V DC, 64 MB
S7-200, flash, USB printing
S7-300/400, capabilities
and third-party
controllers,
printer port
BAV6 644- SIMATIC 19in. TFT 12.5MB | 1xTTY, 2711P- PanelView 15 in. TFT display,
0BA01-2AX0 | MP377 touch, | display, 2xRS232, T15C4D1 Plus 1500 1024x768 pixels,
19in. 65,536 colors, 1xRS422, color touch 18-bit color,
1280x1024 1xRS485, EtherNet/IP and
pixels, touch, 2xUSB, RS-232, touch,
24V DC only 2xEthernet, S5, 24V DC, 64 MB
S7-200, flash, USB printing
S7-300/400, capabilities
and third-party
controllers,
printer port
B6AV6622- WINCC Configuration | N/A N/A 9701- RSView RSView Studio
0BAO01-0AAQ | FLEXIBLE and VWSTMENE | Studio Machine Edition
STANDARD programming Machine configuration
software software for Edition software for
Simatic software developing and
OP/TP/ testing machine
MP270, level HMI
MP370,0P77, applications
OP/TP170and
micro panels

160 Publication LOGIX-APO08B-EN-P - June 2008

Siemens HMI Cross Reference Table ~ Appendix B

Notes:

Publication LOGIX-AP008B-EN-P - June 2008 161

Appendix B Siemens HMI Cross Reference Table

162 Publication LOGIX-APO08B-EN-P - June 2008

Rockwe" Autom ation Rockwell Automation provides technical information on the Web to assist you in
using its products. At http://support.rockwellautomation.com, you can find technical

support manuals, a knowledge base of FAQs, technical and application notes, sample code and
links to software service packs, and a MySupport feature that you can customize to
make the best use of these tools.

For an additional level of technical phone support for installation, configuration, and
troubleshooting, we offer TechConnect support programs. For more information,
contact your local distributor or Rockwell Automation representative, or visit

http://support.rockwellautomation.com.

Installation Assistance

If you experience a problem within the first 24 hours of installation, please review the
information that's contained in this manual. You can also contact a special Customer
Support number for initial help in getting your product up and running,

United States 1.440.646.3434
Monday — Friday, 8am — 5pm EST

Outside United Please contact your local Rockwell Automation representative for any
States technical support issues.

New Product Satisfaction Return

Rockwell Automation tests all of its products to ensure that they are fully operational
when shipped from the manufacturing facility. However, if your product is not
functioning and needs to be returned, follow these procedures.

United States Contact your distributor. You must provide a Customer Support case
number (call the phone number above to obtain one) to your distributor
in order to complete the return process.

Outside United Please contact your local Rockwell Automation representative for the
States return procedure.

www.rockwellautomation.com

Power, Control and Information Solutions Headquarters

Americas: Rockwell Automation, 1201 South Second Street, Milwaukee, WI 53204-2496 USA, Tel: (1) 414.382.2000, Fax: (1) 414.382.4444

Europe/Middle East/Africa: Rockwell Automation, Vorstlaan/Boulevard du Souverain 36, 1170 Brussels, Belgium, Tel: (32) 2 663 0600, Fax: (32) 2 663 0640
Asia Pacific: Rockwell Automation, Level 14, Core F, Cyberport 3, 100 Cyberport Road, Hong Kong, Tel: (852) 2887 4788, Fax: (852) 2508 1846

Publication LOGIX-AP0O08B-EN-P - June 2008

Supersedes publication LOGIX-AP008B-EN-P Copyright © 2008 Rockwell Automation, Inc. All rights reserved. Printed in the U.S.A.

http://support.rockwellautomation.com
http://support.rockwellautomation.com

	LOGIX-AP008B-EN-P, Simatic S7 to Logix5000 Application Conversion Guide Application Solution
	Table of Contents
	Preface
	Purpose
	Conversion versus Translation
	Terminology
	Additional Resources
	PLC Logic Conversion Services Provided by Rockwell Automation

	Hardware Conversion
	Introduction
	S7 Controllers
	I/O Systems
	Networks
	Conversion of HMI
	Conversion of Systems Containing Distributed Controllers
	Connecting Siemens and Rockwell Automation Devices

	Logix Features that May Not be Familiar to S7 Users
	Introduction
	S7 Organization Blocks Compared to Logix Tasks
	Tags Not Addresses
	I/O and Alias Tags
	Programming Languages
	Add-On Instructions
	The Common Industrial Protocol (CIP)
	Data Exchange between Controllers
	User-Defined Data Types
	Asynchronous I/O Updating
	The DINT Data Type
	Phase Manager
	Coordinated System Time (CST)
	Timestamped Inputs
	Scheduled Outputs
	No Temporary Variables
	No Accumulators or Special Registers needed

	Conversion of System Software and Standard Functions
	Introduction
	Logix System Functions
	Copy
	Date and Time Setting and Reading
	Read System Time
	Handling of Interrupts
	Errors
	Status – Controller
	Status – Module
	Status – for OBs and Tasks
	Timers
	Conversion Routines
	String Handling Routines
	Examples of System Function Calls

	Conversion of Typical Program Structures
	Introduction
	Conversion Code Examples
	Other Topics Related to Programming
	A Larger Example - Control Module

	Common Mistakes when Converting to Logix
	Introduction
	Not Selecting Appropriate Hardware
	Underestimating Impact of Task Scheduling
	Performing Translation Instead of Conversion
	Not Using the Most Appropriate Logix Languages
	Implementation of Incorrect Data Types – DINT versus INT
	User Code Emulating Existing Instructions
	Incorrect Usage of COP, MOV, and CPS
	Incorrect Usage of CPT
	Not Handling Strings in Optimal Way
	Extensive Usage of Jumps
	Not Using Aliased Tags

	S7 to Logix Glossary
	Introduction
	Hardware Terminology
	Software Terminology

	S7 300 and S7 400 Parts and RA Equivalents
	Introduction
	Compact S7 300 CPUs
	Standard S7 300 CPUs
	Technology S7 300 CPUs
	Fail-Safe S7 300 CPUs
	S7 300 Digital Input Modules
	S7 300 Digital Output Modules
	S7 300 Relay Output Modules
	S7 300 Digital Combo Modules
	S7 300 Analog Input Modules
	S7 300 Analog Output Modules
	S7 300 Analog Combo Modules
	S7 400 Standard Controllers
	Redundant and Fail Safe Controllers
	Digital Input Modules
	Digital Output Modules
	Analog Input Modules
	Analog Output Modules

	Siemens HMI Cross Reference Table
	SIMATIC Micro Panels and Rockwell Automation Equivalents
	SIMATIC Panels - 7x Series and Rockwell Automation Equivalents
	SIMATIC Panels - 17x Series and Rockwell Automation Equivalents
	SIMATIC Panels - 27x Series and Rockwell Automation Equivalents
	SIMATIC Multi Panels - 27x Series and Rockwell Automation Equivalents
	SIMATIC Multi Panels - 37x Series and Rockwell Automation Equivalents

	Back Cover

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Euroscale Uncoated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 99
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /TimesNewRomanPSMT
 /Times-Roman
]
 /NeverEmbed [true
 /HelveticaNeue-Condensed
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 900
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Rockwell Job Options for Web-only PDF Files)
 >>
>> setdistillerparams
<<
 /HWResolution [2540 2540]
 /PageSize [792.000 1224.000]
>> setpagedevice

